sampledoc

Previous topic

Reference

Next topic

License

Literature

Here is a brief list of references that may be useful in understanding the basics and applications of the approach used in this software. The list here is not complete: it is intended to serve as a starting point only.

[B1999]W. Belzig, et al., “Quasiclassical Green’s function approach to mesoscopic superconductivity”. Superlatt. Microstruct. 25, 1251 (1999). http://dx.doi.org/10.1006/spmi.1999.0710
[V2007]P. Virtanen, T. Heikkilä, “Thermoelectric effects in superconducting proximity structures”, Appl. Phys. A 89, 625 (2007). http://dx.doi.org/10.1007/s00339-007-4189-0
[Ch2004]V. Chandrasekhar, “An introduction to the quasiclassical theory of superconductivity for diffusive proximity-coupled systems”. In The Physics of Superconductors, vol II, eds. Bennemann and Ketterson, Springer-Verlag, (2004). http://arxiv.org/abs/cond-mat/0312507
[Ch2009]V. Chandrasekhar, et al., “Thermal transport in superconductor/normal-metal structures”. Supercond. Sci. Technol. 22, 083001 (2009). http://dx.doi.org/10.1088/0953-2048/22/8/083001
[G2006]F. Giazotto, et al., “Opportunities for mesoscopics in thermometry and refrigeration: Physics and Applications”. Rev. Mod. Phys. 78, 217 (2006). http://dx.doi.org/10.1063/1.2908922
[K2001]N. B. Kopnin, Theory of nonequilibrium superconductivity. Oxford University Press (2001).
[G2002]A. M. Gulian, G. F. Zharkov, Nonequilibrium electrons and phonons in superconductors. Kluwer Academic Publishers (2002).
[R1986]J. Rammer, H. Smith, “Quantum field-theoretical methods in transport theory of metals”. Rev. Mod. Phys. 58, 323 (1986). http://link.aps.org/abstract/RMP/v58/p323

This program utilizes the numerical solvers COLNEW and TWPBVPC detailed in the following publications:

[B1987]

G. Bader, U. Ascher, “A new basis implementation for a mixed order boundary value ODE solver”, SIAM J. Scient. Stat. Comput. 8, 483 (1987). http://dx.doi.org/10.1137/0908047

http://www.netlib.org/ode/colnew.f

[C1988]J. R. Cash, “Two-Point Boundary Value Problems Using Iterated Deferred Corrections. Part 2: The Development and Analysis of Highly Stable Deferred Correction Formulae”, SIAM J. Numer. Anal. 25, 862 (1988). http://dx.doi.org/10.1137/0725049
[C2005]

J. R. Cash, F. Mazzia, “A new mesh selection algorithm, based on conditioning, for two-point boundary value codes”, J. Comput. Appl. Math. 184, 362 (2005). http://dx.doi.org/10.1016/j.cam.2005.01.016

http://www.ma.ic.ac.uk/~jcash/BVP_software/readme.php