Energy level spectroscopy

Home
Up

Energy level spectroscopy of macroscopic quantum systems is of large current interest. In conjunction with quantum computing, superposition of macroscopic quantum states have recently been observed in potential wells with two adjacent minima. In single Josephson junctions, with a periodic potential for the phase difference across the junction, superposition of states leads to delocalization of the macroscopic phase variable. A consequence of this is the formation of energy bands, in a similar fashion as for electrons in solids.

We have verified the existence of these bands experimentally using a novel spectroscopic tool based on inelastic Cooper pair tunneling in a mesoscopic junction. According to the environmental fluctuation theory, non-coherent Cooper pair tunneling is allowed only if energy is exchanged with the surroundings. Thus, transitions between energy bands are seen as current peaks in the IV-curve of a probe junction.

Contour plot of the measured current in the probe junction in the flux-voltage plane; flux penetrating the SQUID loops is given in reduced units Phi/Phi0 where Phi0 = h/2e is the flux quantum. A sequence of resonance peaks is seen in the subgap-conductance. These peaks are identified as coming from transitions between the excited bands of a Josephson junction



Home | Quantum amplifiers |  Josephson junctions |  Carbon nanotubes 
  Noise and high-f |  Junctions/interfaces | Equipment  | Members | Publications

For problems or questions regarding this web contact [pjh@neuro.hut.fi].
Last updated: 10/13/04.