MODELING DESIGN AND FABRICATION OF LATERALLY-CORRUGATED RIDGE-WAVEGUIDE DISTRIBUTED FEEDBACK LASERS

A. Laakso, J. Viheriala, J. Karinen, M. Dumitrescu and M. Pessa

Optoelectronics Research Centre, Tampere University of Technology, PO Box 692, FIN-33101, Tampere, Finland
email: Antti.I.Laakso@tut.fi

The simplicity of their structure combined with the good wavelength selectivity of the integrated Bragg gratings make distributed feedback (DFB) lasers the favored single-longitudinal-mode edge-emitting laser (EEL) device. The conventional DFB-EEL designs are based on embedding a grating deep into the epilayer structure, whereas our approach uses laterally-corrugated ridge-waveguide (LC-RWG) structures (sketched in the upper panel of Fig. 1), which enable a single growth and processing sweep, thus increasing the yield and reducing the fabrication cost.

The κL-value (i.e. the product of the coupling coefficient and device length) is a key design parameter of any type of DFB-EEL. The methods used for calculating the coupling coefficient in conventional DFB structures with embedded gratings involve approximations which are not valid for calculating the coupling coefficient in LC-RWG structures. An improved method, which enables accurate coupling coefficient calculation for LC-RWG structures is proposed and compared with the existing methods. The effects of laterally-corrugated ridge geometry (i.e. grating duty cycle, etching depth, ridge width W and lateral extension of the ridge corrugation D) both on the coupling coefficient and on the Bragg wavelength of different transverse modes are discussed. The improved modeling has been used to design 980 nm DFB-EELs with laterally-corrugated ridge-waveguide third-order gratings. The lasers fabricated using nanoimprint lithography exhibited single-mode operation with 50 dB side-mode suppression ratio (Fig. 2).

![Fig. 1. Sketch (upper panel) and SEM picture (lower panel) of a LC-RWG structure](image1)

![Fig. 2 LIV characteristics and emission spectra for the fabricated LC-RWG DFB-EEL](image2)