Superfluids Under Rotation
Jerusalem, Israel, 15.-19.4.2007

TWISTED VORTEX STATE

Erkki Thuneberg
Department of Physical Sciences, University of Oulu

in collaboration with
R. Hänninen, M. Tsubota,
J. Kopu, V.B. Eltsov, A.P. Finne, and M. Krusius
Content

1) Does the twisted state exist at all?

Hydrodynamic theory
- uniform twist
- linear theory of nonuniform twist

2) Generation of twisted vortex states

Numerical simulations

3) Observation in superfluid 3He

sketch of twisted vortex lines
Twisted vortex states in classical fluids

Figure: http://www.amc.edu.au/research/areas/cavitation/projects/

Stability of a polygon of helical vortices (Okulov 2004)
Rotating superfluid

Equilibrium vortex state

Twist at the ends

Twisted vortex state

→ no mention of twisted vortices!

Taylor-Proudman theorem: "Any slow motion in rotating fluid is columnar"
1) Does the twisted state exist?

Hydrodynamic equations

Superfluid velocity v_s

\[\nabla \times v_s = 0 \quad \text{except at vortex lines} \]
\[\nabla \cdot v_s = 0 \]

\Rightarrow Vortex lines fully determine $v_s(r, t)$.

Line velocity v_L

\[v_L = v_s \]

Add mutual friction

\[v_L = v_s + \alpha \hat{l} \times (v_n - v_s) - \alpha' \hat{l} \times [\hat{l} \times (v_n - v_s)] \quad (1) \]
Continuum model of vorticity

(Hall and Vinen 1956)

\[v_s = \langle v_s^{\text{local}} \rangle \]

\[\nabla \times v_s = \omega \]

\[\nabla \cdot v_s = 0 \]

Line velocity \(v_L \)

\[v_L = \tilde{v}_s + \alpha \hat{l} \times (\tilde{v}_n - v_s) - \alpha' \hat{l} \times [\hat{l} \times (v_n - \tilde{v}_s)] \] \((2) \)

where \(\tilde{v}_s = v_s + \nu \nabla \times \tilde{\omega} \), \(\nu = (\kappa/4\pi) \ln(b/a) \).

Alternatively, one can use equation of motion for \(v_s \):

\[\frac{\partial v_s}{\partial t} = v_s \times \omega + \nu(\omega \cdot \nabla)\tilde{\omega} + \nabla \phi \]
Uniformly twisted vortex state

Most symmetric state [cylindrical coordinates \((r, \phi, z)\)]

\[\mathbf{v}_s = v_\phi(r) \hat{\phi} + v_z(r) \hat{z}, \]

⇒ vorticity

\[\mathbf{\omega} = \frac{1}{2} \nabla \times \mathbf{v}_s = \frac{1}{2} \left[-v'_z \hat{\phi} + \left(\frac{v_\phi}{r} + v'_\phi \right) \hat{z} \right] \]

Calculate vortex line velocity from (2). For a stationary state the radial velocity must vanish. This implies

\[(\Omega r - v_\phi) \left(\frac{v_\phi}{r} + \frac{dv_\phi}{dr} \right) - v_z \frac{dv_z}{dr} + \frac{\nu}{|\mathbf{\omega}| r} \left(\frac{dv_z}{dr} \right)^2 = 0. \]

This implies that the helical vortices rotate together with the normal fluid, \(\mathbf{v}_L = \mathbf{v}_n = \Omega \times \mathbf{r} \).

⇒ There exists a family of stationary, uniformly twisted states.
In a finite cylinder the total axial current must vanish,

\[\int_0^R dr \, r v_z = 0. \tag{3} \]

The functions \(v_z(r) \), \(v_\phi(r) \) and the radial displacement of the vortices compared to equilibrium state, \(\epsilon(r) \), are sketched in the figure.

The simplest case is helical vortices with a wave vector \(Q(r) = \text{constant} \). This has

\[v_\phi(r) = \frac{(\Omega + Q v_0) r}{1 + Q^2 r^2}, \]
\[v_z(r) = \frac{v_0 - Q \Omega r^2}{1 + Q^2 r^2}. \tag{4} \]
Linearized hydrodynamics

Assume general velocity with circular symmetry

\[\mathbf{v}_s = v_r(r, z, t)\hat{r} + v_\phi(r, z, t)\hat{\phi} + v_z(r, z, t)\hat{z} \]

Assume small deviation from rotating equilibrium.
⇒ waves of the form

\[v_r = ckJ_1(\beta r) \exp(ikz - i\sigma t) \]
\[v_z = ic\beta J_0(\beta r) \exp(ikz - i\sigma t) \]

Dispersion relation [Glaberson, Johnson and Ostermeier (1974), Henderson and Barenghi (2004)]

\[\frac{\sigma}{\Omega} = \frac{-i\alpha(\beta^2 + 2k^2\eta_2) \pm i\sqrt{\alpha^2\beta^4 - 4(1 - \alpha')^2k^2(\beta^2 + k^2)\eta_1\eta_2}}{\beta^2 + k^2} \]

where \(\eta_1 = 1 + \nu k^2 / 2\Omega \) and \(\eta_2 = 1 + \nu(\beta^2 + k^2) / 2\Omega \).

In order to understand the dispersion, we study special cases.
1) $\beta \to 0$, corresponds to a short cylinder

\Rightarrow 2 Kelvin wave modes (Hall 1958)

$$k_{\pm} = i \sqrt{\frac{2\Omega \pm \sigma}{\nu}}$$

and an inertial mode

$$k_i = 0$$

At low frequency ($\sigma \ll \Omega$) these give just the columnar motion because Kelvin waves are evanescent. No twisted state.
2) $k \to 0$, corresponds to a long cylinder

\Rightarrow 2 modes

The point $k = \sigma = 0$ corresponds to uniform twist!

At finite k the twist obeys diffusion equation

$$\frac{\partial f}{\partial t} = D \frac{\partial^2 f}{\partial z^2}, \quad D = \frac{1}{d} \left(\frac{2\Omega}{\beta^2} + \nu \right)$$

(5)

where $f(z, t) = v_r$ or v_z.
Summary of two opposite limits

Parallel plates
- columnar vortices

Long cylinder
- twisted vortices
2) Generation of twisted vortex states

- superfluid in a cylinder
- cylinder rotating at $\Omega > \Omega_c$, but
no vortices in the initial state
- generate vortices at one place

- vortices propagate along the cylinder and
- vortex ends rotate around the cylinder axis
Why vortex ends rotate?

Normal component rotates at \(v_n = \Omega \times r \).

Superfluid component: vortex lines move with the average superfluid velocity

1) vortex state: \(v_s \approx \Omega \times r \)
\(\Rightarrow \) vortex lattice rotates at angular velocity \(\Omega \)

2) no vortices: \(v_s = 0 \)

3) vortex front
average superfluid angular velocity \(\Omega/2 \) \(\Rightarrow \) vortex ends rotate at angular velocity \(\Omega/2 \)
\(\Rightarrow \) propagating vortex ends lag behind
Numerical simulation

Vortex line velocity (2)

\[v_L = v_s + \alpha' \hat{l} \times [(v_n - v_s) \times \hat{l}] + \alpha \hat{l} \times (v_n - v_s). \]

\(v_s\) is calculated from Biot-Savart integral. (Risto Hänninen)

The front and the twisted state is confirmed by numerical calculation movie
Axial velocity

\[r = \frac{R}{6} \]

Azimuthal velocity

\[\frac{v_z}{\Omega R} = \frac{v_\phi - \Omega r}{\Omega R} \]

movie
Main observations
- the twisted state has axial current.
- individual vortices become unstable to generate Kelvin waves at large axial current
- the vortices glide at the bottom plate
⇒ relaxation of the twist
- the relaxation is determined by the diffusion equation.
3) Experiment in superfluid 3He-B

Vortex state was generated as discussed above.

The axial velocity v_z affects the texture, which is seen by NMR.
vortex injection

counterflow peak absorption

$\Omega = 1.50 \text{ rad/s}$
$R = 3 \text{ mm}$
$T = 0.55 T_c$
$p = 29 \text{ bar}$

Larmor absorption

$\Omega = 1.45 \text{ rad/s}$
$N = 0$

$\Omega = 1.50 \text{ rad/s}$
$N = N_{eq}$

counterflow peak absorption

frequency shift (kHz)

time (s)
\(\Omega = 1.4 - 1.6 \text{ rad/s} \)

\(p = 29 \text{ bar} \)

Diffusion constant

\[
D = \frac{1}{d} \left(\frac{2\Omega}{\beta^2} + \nu \right) \propto \frac{1}{\text{mutual friction constant}}
\]

(6)
Conclusions

Twisted vortex state is a possible state in long rotating cylinders.

The twisted state can be generated by vortex injection.

The twisted state has been seen in superfluid 3He-B.