Vortices at the A-B phase boundary in superfluid ³He

R. Hänninen

Low Temperature Laboratory Helsinki University of Technology Finland

Theory:

E.V. Thuneberg G.E. Volovik

Experiments:

R. BlaauwgeersV.B. EltsovA.P. FinneM. Krusius

Outline:

- 1. Introduction
- 2. Experimental setup
- 3. Hydrostatic theory in ${}^{3}\text{He}$
- 4. A-B phase boundary
- 5. Results
- 6. Summary

Introduction:

- two main phases: A and B phase
- several textures, especially in the A phase
- new experiments with the phase boundary
- what is the effect of the A-B phase boundary?
- we have calculated the effect on the A phase vortices
- two different textures obtained

Experimental setup:

Hydrostatic theory in ³He:

• p-wave spin triplet \implies order parameter $A_{\mu i}$ is a 3 × 3 matrix

A phase order parameter:

$$A_{\mu j} = \Delta_{\mathcal{A}} \hat{d}_{\mu} (\hat{m}_j + \mathrm{i} \hat{n}_j), \text{ where } \hat{\mathbf{m}} \perp \hat{\mathbf{n}}$$

• vector $\hat{\mathbf{d}}$ defines the axis along which the spin of the Cooper pair vanishes.

• vector $\hat{\mathbf{l}} = \hat{\mathbf{m}} \times \hat{\mathbf{n}}$ gives the orbital angular momentum axis

• superfluid velocity:

$$\mathbf{v}_{\mathrm{sA}} = \frac{\hbar}{2m_3} \sum_i \hat{m}_i \nabla \hat{n}_i$$

Different vortex textures in ³**He-A**:

Hydrostatic free energy:

$$F = \int d^3r (f_{\rm d} + f_{\rm h} + f_{\rm g})$$

• dipole term:

$$f_{\rm d} = -\frac{1}{2}\lambda_{\rm d}(\hat{\mathbf{d}}\cdot\hat{\mathbf{l}})^2,$$

• magnetic anisotropy term:

$$f_{\rm h} = \frac{1}{2} \lambda_{\rm h} (\hat{\mathbf{d}} \cdot \mathbf{H})^2 ,$$

• kinetic terms + gradient energy density $(v_n = 0)$:

$$2f_{\rm g} = \rho_{\perp} \mathbf{v}_{\rm sA}^2 + (\rho_{\parallel} - \rho_{\perp})(\hat{\mathbf{l}} \cdot \mathbf{v}_{\rm sA})^2 + 2C\mathbf{v}_{\rm sA} \cdot \boldsymbol{\nabla} \times \hat{\mathbf{l}} - 2C_0(\hat{\mathbf{l}} \cdot \mathbf{v}_{\rm sA})(\hat{\mathbf{l}} \cdot \boldsymbol{\nabla} \times \hat{\mathbf{l}}) \\ + K_{\rm s}(\boldsymbol{\nabla} \cdot \hat{\mathbf{l}})^2 + K_{\rm t}(\hat{\mathbf{l}} \cdot \boldsymbol{\nabla} \times \hat{\mathbf{l}})^2 + K_{\rm b}|\hat{\mathbf{l}} \times (\boldsymbol{\nabla} \times \hat{\mathbf{l}})|^2 + K_5|(\hat{\mathbf{l}} \cdot \boldsymbol{\nabla})\hat{\mathbf{d}}|^2 + K_6\sum_{i,j}[(\hat{\mathbf{l}} \times \boldsymbol{\nabla})_i\hat{\mathbf{d}}_j]^2.$$

Characteristic scales:

• dipole length:

$$\xi_{\rm d} = (\hbar/2m_3)\sqrt{\rho_{\parallel}/\lambda_{\rm d}} \approx 10 \ \mu{\rm m}$$

• dipole field:

$$H_{\rm d} = \sqrt{\lambda_{\rm d}/\lambda_{\rm h}} \approx 2 \ {\rm mT}$$

• dipole velocity:

$$v_{\rm d} = \sqrt{\lambda_{\rm d}/\rho_{\parallel}} \approx 1 \text{ mm/s}$$

B phase order parameter:

$$A_{\mu j} = \Delta_{\rm B} R_{\mu j}(\hat{\mathbf{n}}, \theta) e^{\mathrm{i}\phi},$$

- $R_{\mu j}$ rotation matrix around $\hat{\mathbf{n}}$ with angle θ
- superfluid velocity:

$$\mathbf{v}_{\rm sB} = \frac{\hbar}{2m_3} \nabla \phi$$

Hydrostatic free energy:

• kinetic term $(v_n = 0)$:

$$f_{\rm K} = \frac{1}{2} \rho_{\rm s} v_{\rm sB}^2,$$

• dipole term:

$$f_{\rm D} = \lambda_{\rm D} (R_{ii} R_{jj} + R_{ij} R_{ji}) \implies \theta = 104^{\circ}$$

• gradient term:

$$f_{\rm G} = \lambda_{\rm G1} \partial_i R_{\alpha i} \partial_j R_{\alpha j} + \lambda_{\rm G2} \partial_i R_{\alpha j} \partial_i R_{\alpha j} \implies R_{\mu i} = \text{const}$$

• plus some other terms

Vortices in the B phase:

- singular (in the scale of ξ_d)
- larger critical velocity ($v_{\rm cB} \gg v_{\rm cA}$)
- carry one quantum of circulation

A-B phase boundary:

• requirements at the A-B boundary (normal $\hat{\mathbf{s}} = \hat{\mathbf{z}} \parallel \mathbf{\Omega}$):

$$\hat{\mathbf{d}} = \stackrel{\leftrightarrow}{R} \cdot \hat{\mathbf{s}}$$
$$(\hat{\mathbf{m}} + i\hat{\mathbf{n}}) \cdot \hat{\mathbf{s}} = e^{i\phi}$$
$$\hat{\mathbf{l}} \cdot \hat{\mathbf{s}} = 0$$

Simplified model:

Results:

- \bullet calculations done for $v_{\rm sA}=0$ deep in the A phase
- assumed GL-region $(T \approx T_c)$
- minimization using conjugate gradient method
- \bullet two different textures obtained
 - texture depends on the rotation velocity (density of the vortices at the boundary)
- \bullet both textures have half-quantum vortex cores at the phase boundary
- $\hat{\mathbf{d}} \approx \hat{\mathbf{x}}$ everywhere
- \bullet independent of the initial ansatz

Low density texture (low rotation velocity):

Low density texture (low rotation velocity):

$\nabla \times \mathbf{v}_{s}$ for the low density texture:

Superfluid current for the low density texture:

High density texture (high rotation velocity):

High density texture (high rotation velocity):

$\nabla \times \mathbf{v}_{s}$ for the high density texture:

Superfluid current for the high density texture:

Summary:

- calculated the vortex structure at the A-B boundary
- two different textures obtained (low density & high density)
 - half-quantum vortex cores

To be done:

- generalize to other pressures
- possible other textures??
- calculate the NMR spectrum
 - difficult to measure

