% alun määritelmät sallivat latex-kaavojen suoran siirron tähän % plain-tex documenttiin: % - yksirivinen latex kaava: suoraan muuttumattomana, edellyttäen % että label on mukana, juuri ennen \end{equation} lausetta % - useampiriviset kaavat: lisää ennen varsinaista kaavaa \eqalign{ % ja perään }, sekä poista toiset &. %\magnification=1200 \input epsf.def %needed only for post script figures \hsize=16.5truecm \vsize=25truecm \def\tensor#1{\bar{\bar{#1}}} \def\begin#1{$$} \def\label#1#2#3{$$} \def\section#1{{\bf #1}} \def\ref#1{} \def\cite#1{} \def\nonumber{} \def\mbox{} \def\\{\cr} \parindent=0pt Matalien l\"amp\"otilojen fysiikan teoria (Kyl-0.104)\hfil Autumn 2000\break Electronic transport in mesoscopic systems\hfil Exercise set 9\break \parindent=20pt \bigskip 1. Exercise E.5.1 from Datta's book. Go also through the simple-minded derivation of the weak-localization correction to the conductivity in 2 dimensions (pages 207-208): $$\sigma=\sigma_{\rm cl}-{e^2\over \pi h}\ln{\tau_\phi\over\tau_m}.$$ Use a similar argument to derive in 3 dimensions the following result $$\sigma=\sigma_{\rm cl}-{e^2\over 2\pi h}({1\over L_m}-{1\over L_\phi}),$$ which probably is correct at least qualitatively. (There is an additional correction arising from electron-electron interactions, which will not be considered here.) Express the relative magnitudes of the weak localization corrections [$(\sigma_{\rm cl}-\sigma)/\sigma_{\rm cl}$] as a function of $k_FL_m$ in both 2 and 3 dimensions, and compare their order of magnitude. \bigskip Exercises E.5.2 and E.5.3 from Datta's book. \bigskip \bigskip \end