% alun määritelmät sallivat latex-kaavojen suoran siirron tähän % plain-tex documenttiin: % - yksirivinen latex kaava: suoraan muuttumattomana, edellyttäen % että label on mukana, juuri ennen \end{equation} lausetta % - useampiriviset kaavat: lisää ennen varsinaista kaavaa \eqalign{ % ja perään }, sekä poista toiset &. %\magnification=1200 \input epsf.def %needed only for post script figures \hsize=16.5truecm \vsize=25truecm \def\tensor#1{\bar{\bar{#1}}} \def\begin#1{$$} \def\label#1#2#3{$$} \def\section#1{{\bf #1}} \def\ref#1{} \def\cite#1{} \def\nonumber{} \def\mbox{} \def\\{\cr} \parindent=0pt Matalien l\"amp\"otilojen fysiikan teoria (Kyl-0.104)\hfil Autumn 2000\break Electronic transport in mesoscopic systems\hfil Exercise set 8\break \parindent=20pt \bigskip 1. Derive the Kubo formula $$G={2e^2\over h}{\hbar^2\over L^2}\sum_{m,n,k,k'} v_mv_n\vert G^{\rm R}(m,k;n,k')\vert^2.$$ Instead of following the derivation by Datta (pages 159-160) use only continuum expressions. (Note that $\Gamma_p(y,y')=\sum_m\chi_m(y)\hbar v_m\chi_m(y')$ does not contain $a$ in our normalization and ${\rm Tr}A(y,y')=\int dyA(y,y)$, see first exercise in set 7.) Also use the fact that $\bar T_{pq}$ should be independent on the choice of $x_p$ and $x_q$ in the leads to justify the neglect of $G^{\rm R}(m,k_1;n,k_2)G^{\rm R*}(m,k_3;n,k_4)$ for $k_1\not= k_3$ etc. Continue to solve exercise E.3.8. \bigskip Exercises E.3.9 and E.4.1 - E.4.2 from Datta's book. \bigskip \bigskip \end