% alun määritelmät sallivat latex-kaavojen suoran siirron tähän % plain-tex documenttiin: % - yksirivinen latex kaava: suoraan muuttumattomana, edellyttäen % että label on mukana, juuri ennen \end{equation} lausetta % - useampiriviset kaavat: lisää ennen varsinaista kaavaa \eqalign{ % ja perään }, sekä poista toiset &. %\magnification=1200 \input epsf.def %needed only for post script figures \hsize=16.5truecm \vsize=25truecm \def\tensor#1{\bar{\bar{#1}}} \def\begin#1{$$} \def\label#1#2#3{$$} \def\section#1{{\bf #1}} \def\ref#1{} \def\cite#1{} \def\nonumber{} \def\mbox{} \def\\{\cr} \parindent=0pt Matalien l\"amp\"otilojen fysiikan teoria (Kyl-0.104)\hfil Autumn 2000\break Electronic transport in mesoscopic systems\hfil Exercise set 7\break \parindent=20pt \bigskip Exercise E.3.3 from Datta's book. Note that if we insist that the discretized version reduces correctly to the continuum case when $a\rightarrow 0$, then eq. (3.5.18) should read ($t=\hbar^2/2ma^2$) $$g_p^R(p_i,p_j)= -{1\over at}\sum_m\chi_m(p_i)\exp({\rm i}k_ma)\chi_m(p_j).$$ (Datta neglects factors of $a$ in the delta function.) Also, I find this result more simple to derive by adding a reflected wave to the solution of an infinite lead. There are also some sign mistakes in Datta's solution. Also justify, why the truncation problem leads to consider a semi-infinite lead. \bigskip Exercises E.3.4 - E.3.6 from Datta's book. \bigskip \bigskip \end