% alun määritelmät sallivat latex-kaavojen suoran siirron tähän % plain-tex documenttiin: % - yksirivinen latex kaava: suoraan muuttumattomana, edellyttäen % että label on mukana, juuri ennen \end{equation} lausetta % - useampiriviset kaavat: lisää ennen varsinaista kaavaa \eqalign{ % ja perään }, sekä poista toiset &. %\magnification=1200 \hsize=16.5truecm \vsize=25truecm \def\tensor#1{\bar{\bar{#1}}} \def\begin#1{$$} \def\label#1#2#3{$$} \def\section#1{{\bf #1}} \def\ref#1{} \def\cite#1{} \def\nonumber{} \def\mbox{} \def\\{\cr} \parindent=0pt Matalien l\"amp\"otilojen fysiikan teoria (Kyl-0.104)\hfil Autumn 2000\break Electronic transport in mesoscopic systems\hfil Exercise set 4\break \parindent=20pt \bigskip Exercises E.2.3, E.2.4 from Datta's book. Note that the Hall coefficient according to Drude model $$R_H={E_y\over J_xB_z}=-{1\over \vert e\vert n_s}$$ is negative for electrons. Is it also in E.2.3? \bigskip 3. Some ambiguities in the discussion of screening in Datta's book (pages 72-74) can be rectified as follows. Instead of (1.2.2) we write the 2D Schr\"odinger equation $$[E_0+{(i\hbar\nabla+e{\bf A})^2\over 2m}+U]\Psi(x,y)=E\Psi(x,y),$$ with constant $E_0$ and the band-edge energy $E_s=E_0+U$. Otherwise use the same formulas as Datta: the potential is related to electric field by $e{\bf E}=-\nabla U$, the 2D electron density $n_s=N_s(E_f-E_s)$ and the Gauss' law $$\nabla\cdot{\bf E}={\rho\over\epsilon}={e\delta n_s\over \epsilon d}$$ where $d$ is the thickness of the 2D electron gas. Derive from these that $E_s$ is determined by the equation $$(\nabla^2-\beta^2)\delta E_s=-\beta^2\delta E_f$$ Solve this for the idealized case of one dimension and a step change of $E_f$, and show that $\beta^{-1}=\sqrt{\pi\hbar^2\epsilon d/e^2m}$ represents the length where the space charge is screened. Note that a similar analysis applies also to the density discontinuity (but $E_f=$ constant) at the junction of a narrow conductor, which was studied in exercises E.1.3 and E.1.4. This simple theory of screening is known as Thomas-Fermi theory. In more accurate theory the Schr\"odinger equation has to be solved for a spatially varying $U(x)$. Another fact that was neglected here is that ${\bf E}$ really is 3 dimensional. \bigskip \end