% alun määritelmät sallivat latex-kaavojen suoran siirron tähän % plain-tex documenttiin: % - yksirivinen latex kaava: suoraan muuttumattomana, edellyttäen % että label on mukana, juuri ennen \end{equation} lausetta % - useampiriviset kaavat: lisää ennen varsinaista kaavaa \eqalign{ % ja perään }, sekä poista toiset &. %\magnification=1200 \hsize=16.5truecm \vsize=25truecm \def\tensor#1{\bar{\bar{#1}}} \def\begin#1{$$} \def\label#1#2#3{$$} \def\section#1{{\bf #1}} \def\ref#1{} \def\cite#1{} \def\nonumber{} \def\mbox{} \def\\{\cr} \parindent=0pt Matalien l\"amp\"otilojen fysiikan teoria (Kyl-0.104)\hfil Autumn 2000\break Electronic transport in mesoscopic systems\hfil Exercise set 2\break \parindent=20pt \bigskip Exercises E.1.3, E.1.4 from Datta's book. \bigskip 3. Show that the average drift of all particles with velocity ${\bf v}_d$ is equivalent to the distribution function $f_0(p^2/2m-{\bf v}_d\cdot{\bf p})$ (to first order in $v_d$), where $f_0(\epsilon)=\{\exp[\beta(\epsilon-\mu)]+1\}^{-1}$ is the equilibrium Fermi distribution. From this calculate the electric current (in 2 dimensions) $${\bf j}=2e{1\over L^2}\sum_{\bf k}{\hbar {\bf k}\over m}f({\bf k})$$ in such a way that does not use the energy states outside the neighborhood ($\pm$ a few $k_BT$) of the Fermi surface (assuming $k_BT\ll E_f-E_s$). \bigskip 4. In the lectures we derived the Einstein relation $\sigma=e^2N_sD$ for degenerate electron gas. Derive the corresponding relation $$\mu={\vert e\vert D\over kT}$$ for nondegenerate electrons. \bigskip \end