% alun määritelmät sallivat latex-kaavojen suoran siirron tähän % plain-tex documenttiin: % - yksirivinen latex kaava: suoraan muuttumattomana, edellyttäen % että label on mukana, juuri ennen \end{equation} lausetta % - useampiriviset kaavat: lisää ennen varsinaista kaavaa \eqalign{ % ja perään }, sekä poista toiset &. %\magnification=1200 \hsize=16.5truecm \vsize=25truecm \def\tensor#1{\bar{\bar{#1}}} \def\begin#1{$$} \def\label#1#2#3{$$} \def\section#1{{\bf #1}} \def\ref#1{} \def\cite#1{} \def\nonumber{} \def\mbox{} \def\\{\cr} \parindent=0pt Matalien l\"amp\"otilojen fysiikan teoria (Kyl-0.104)\hfil Autumn 2000\break Electronic transport in mesoscopic systems\hfil Exercise set 1\break \parindent=20pt \bigskip Exercises E.1.1, E.1.2 from Datta's book. \bigskip 3. As will be discussed later in this course, the effect of interactions can be represented by replacing the potential $U$ in the Schr\"odinger equation by a self energy $\Sigma$, which is complex valued. Study the effect of constant $\Sigma$ on a plane wave $\psi(t=0,x)=\exp(ikx)/\sqrt{L}$ and relate $\Sigma$ to the phase relaxation time $\tau_\phi$. \bigskip 4. Show that the two lowest eigenfunctions ($n=0$ and 1) of the harmonic oscillator \begin{equation} [-{\hbar^2\over 2m}{d^2\over d x^2} +{1\over 2}m\omega_0^2x^2]\chi(x)=E\chi(x) \label{e.Gibbs} \end{equation} have the (unnormalized) forms \begin{equation} \chi_0(x)=\exp(-{m\omega_0\over 2\hbar}x^2), \chi_1(x)=x \exp(-{m\omega_0\over 2\hbar}x^2) \label{e.Gibbs} \end{equation} and the energies $E=(n+{1\over 2})\hbar\omega_0$. \bigskip 5. Show that in the symmetric gauge ${\bf A}={1\over 2}B(-y\hat{\bf x}+x\hat{\bf y})$ the lowest Landau level has eigenfunctions (polar coordinates, $l=0$, 1, 2, $\ldots$, $\omega_c=\vert e\vert B/m$) \begin{equation} \psi_l(r,\phi)=r^le^{-il\phi}\exp(-{m\omega_c\over 4\hbar}r^2). \label{e.Gibbs} \end{equation} Describe their differences and similarities to the corresponding solutions \begin{equation} \psi_k(x,y)=e^{ikx}\exp[-{m\omega_c\over 2\hbar}(y-{\hbar k\over m\omega_c})^2]. \label{e.Gibbs} \end{equation} in the Landau gauge ${\bf A}=-By\hat{\bf x}$. \bigskip \end