$01234\\5678$

17–22/Aug/2004, COSLAB workshop, Helsinki

Regeneration of small-scales by large-scale data assimilation in three-dimensional turbulence

Kyo Yoshida (Univ. Tsukuba),

Junzo Yamaguchi, Yukio Kaneda (Nagoya Univ.)

 $\begin{array}{r} 01234 \\ 5678 \end{array}$

0 Introduction

0.1 Sensitivity of turbulence

Turbulence

- Nonlinear, forced-dissipative dynamical systems with a huge number of degrees of freedom.
- sensitive to small differences in the flow conditions.

 \implies Unpredictability

- Chaos (e.g, Lorenz model).
- Predictability of atmospheric turbulence is limited to 2 weeks or so [Leith and Kraichnan (1967)].

0.2 Predictability of turbulence

01234

5678

Error spectrum

$$\Delta(k) = \sum_{|\mathbf{k}'|=k} \delta \mathbf{u}(\mathbf{k}') \cdot \delta \mathbf{u}(-\mathbf{k}')$$

upper limit of predicition time ~ 14 days.

Leith and Kraichnan, J. Atmos. Sci. (1972)

Recent studies suggest that

small scales are predictable from large-scale data,

that is, small-scale error is suppressed if correct large-scale data are continuously assimilated in simulations.

Previous studies

- Numerical studies
 - Reynolds numbers are too small.

[Henshaw, Kreiss et al. (1998, 2003), Hayashi et al. (2002),

Olson and Titi (2003)]

- Mathematical studies
 - Derived conditions for effective data assimilation are too strong.

4

0.4 Number of determining modes

• Smallest number N such that

$$\lim_{t \to \infty} |\delta \mathbf{u}(\mathbf{k}^{(m)}, t)| = 0 \ (m = 1, \cdots, N) \Longrightarrow \lim_{t \to \infty} |\delta \mathbf{u}(\mathbf{k}, t)| = 0 \ (\forall \mathbf{k})$$

Foias and Prodi (1967), Foias et al. (1983), Jones and Titi (1993)

Exisiting rigorous estimates for upper-bounds of N seem to be too large compared to DNS results.

 $01234\\5678$

Get some idea on the quantitative aspect of the effect of the data assimilation at large Reynolds numbers by means of DNS.

Quantitative study of the critical wavenumber k^*

such that the small-scale error is suppressed if data of Fourier modes with wavenumber up to k^* (or larger) are continuously assimilated to those of the correct field.

DNS with wide range of Reynolds numbers, $R_{\lambda} = 31 - 284$ (the highest resolution: 512³)

2 Numerical experiments

 $\begin{array}{c}01234\\5678\end{array}$

2.1 Method of Data Assimilation

Fourier modes with wavenumber $k < k_a$ are continuously assimilated.

2.2 DNS Parameters

N	k_{\max}	$\nu(imes 10^3)$	E	ϵ	η	R_{λ}
64	30	10.0	0.500	0.171	0.0491	31
128	60	2.70	0.500	0.138	0.0194	67
256	120	1.10	0.500	0.132	0.0100	107
512	241	0.289	0.500	0.0712	0.0043	284

External force: Viscosity ν :

 $\begin{aligned} \mathbf{f}(\mathbf{k},t) &= -\gamma \mathbf{u}(\mathbf{k},t) & 2 < k < 3 \\ k_{\max} \eta \sim 1, & \eta = (\nu^3/\epsilon)^{1/4} \end{aligned}$

Numerical scheme:

Alias-free spectral method, 4-th order Runge-Kutta method

 $\begin{array}{c}01234\\5678\end{array}$

3 Numerical Results

3.1 Time evolution of the error spectrum

 $\begin{array}{c} 01234\\ 5678\end{array}$

3.2 Time evolution of the error

$$\Delta(t;k_a) = \frac{1}{2} \langle \delta \mathbf{u}(t) \cdot \delta \mathbf{u}(t) \rangle$$

 $\alpha(k_a)$: decay coefficient. $\Delta(t; k_a) \sim C \exp[-\alpha(k_a)t].$

Kolmogorov length scale $\eta = (\nu^3/\epsilon)^{1/4}$

Nondimensionalized decay coefficient

$$\widetilde{\alpha}(k_a\eta) = \tau \alpha(k_a) \qquad \eta = (\nu^3/\epsilon)^{1/4}, \tau = (\nu/\epsilon)^{1/2}.$$

Critical wavenumber

$$k^*\eta\sim 0.2$$

3.4 Decay coefficient vs assim. energy/enstrophy ratio 01234 5678

Energy of assimilated modes

$$E_a = \int_0^{k_a} dk E(k)$$

Eddy-turnover time

$$T_e = \frac{L_0}{u'}$$

Enstrophy of assimilated modes

$$\Omega_a = \int_0^{k_a} dk k^2 E(k)$$

Kolmogorov time scale

 $\tau = (\nu/\epsilon)^{1/2}$

4 Conclusion

• In turbulence, small-scale error is suppressed, if a sufficient amount of correct data of large scales are continuously assimilated in simulation (small scales are functions of large-scale data).

01234

5678

- The condition for the amount is given by $k^*\eta \sim 0.2$ k^* : the maximum wavenumber of the assimilated modes, $\eta = (\nu^3/\epsilon)^{1/4}$: Kolmogorov length scale.
 - The enstrophy ratio: $\Omega^*/\Omega \sim 0.30 0.35$
 - The ratio of number of degrees of freedom : $N^*/N \sim 0.01$
- The condition is expected to be universal for turbulence at very large Reynolds numbers.

 $\begin{array}{r} 01234\\ 5678 \end{array}$

Small eddies are subordinate to large eddies. (Small eddies are a lizard's tail!)

