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Some articles on astro-ph this year

1. TURBULENCE AND GALACTIC STRUCTURE
2. PROBING TURBULENCE IN THE COMA GALAXY CLUSTER
3. INTERSTELLAR TURBULENCE: IMPLICATIONS AND EFFECTS
4. GRAVITY, TURBULENCE, AND STAR FORMATION
5. HOT DISK CORONA AND MAGNETIC TURBULENCE IN
RADIO-QUIET ACTIVE GALACTIC NUCLEI: OBSERVATIONAL
CONSTRAINTS
6. COSMIC RAY SCATTERING AND STREAMING IN
COMPRESSIBLE MAGNETOHYDRODYNAMIC TURBULENCE
7. STRONG TURBULENCE IN THE COOL CORES OF GALAXY
CLUSTERS: CAN TSUNAMIS SOLVE THE COOLING FLOW
PROBLEM?
8. GENERATION OF MAGNETIC FIELDS IN THE MULTI-PHASE ISM
WITH SUPERNOVA-DRIVEN TURBULENCE
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Turbulence in Cosmology

Turbulent Universe today

Perfect thermal equilibrium at T > 1 eV

What was at the very beginning ?
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The situation in short:

Anna:
 (5 yr. old) 

"At the beginning of Big Bang,
or however they call it,
there was a big ball of fire.
But the problem is that no
one knows where it came from."
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Turbulence in the Early Universe Cosmology

Outline:

Inflationary cosmology: an introduction

Creation of matter

Relaxation towards equilibrium

Thermalization
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BASICS OF INFLATION

Puzzles of classical cosmology which Inflation solves:

WHY THE UNIVERSE

is so old, big and flat ?
t > 1010 years

homogeneous and isotropic?
δT/T ∼ 10−5

contains so much entropy?
S > 1090

does not contain unwanted relics?
(e.g. magnetic monopoles)
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Recipe

Inflationary Universe: accelerated expansion or ä > 0

Friedmann equations

ä = −4π

3
Ga(ρ+ 3p)

We have inflation when p < −ρ/3
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Getting something for nothing

T ν
µ =















ρ 0 0 0

0 −p 0 0

0 0 −p 0

0 0 0 −p















Energy-momentum conservation T µν ;ν = 0 can be written as

dρ

dt
+ 3H(ρ+ p) = 0

Consider Tµν for a vacuum. Vacuum has to be Lorentz invariant,
hence T ν

µ = V δ νµ and we find p = −ρ ⇒ ρ̇ = 0

Energy of the vacuum stays constant despite the expansion !
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The Inflaton field

Consider Tµν for a scalar field ϕ

Tµν = ∂µϕ∂νϕ− gµν L

with the Lagrangian :

L = ∂µϕ∂
µϕ− V (ϕ)

In a state when all derivatives of ϕ are zero, the stress-energy
tensor of a scalar field is that of a vacuum

Tµν = V (ϕ) gµν
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There are two basic ways to arrange ϕ ≈ const and hence to
imitate the vacuum-like state.

1. A. Guth: consider potential
with two minima

2. A. Linde: consider the
simplest potential

V (ϕ) =
1

2
m2ϕ2

ϕ

V (ϕ)

MPl

ϕ

V (ϕ)
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Chaotic Inflation

Equation of motion

ϕ̈+ 3Hϕ̇+m2ϕ = 0

If H � m the field (almost) does not move.

MPl

ϕ

V (ϕ) H ∼
√

ρ/M2
Pl ∼ m ϕ/MPl :

ϕ > MPl Inflation

ϕ < MPl Field oscillates.
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During and after Inflation the Universe is empty, in a vacuum state.

How vacuum was turned into radiation ?

Where all matter and seeds for structure formation came from ?
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Unified Theory of Creation

During Inflation the Universe is “empty”. But small fluctuations obey

ük + [k2 +m2
eff (τ )] uk = 0

and it is not possible to keep fluctuations in vacuum
if meff is time dependent

Sources of matter (and structure) creation

Expansion of space-time itself, a(τ )

Evolution of the inflaton field, φ(τ )
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Technical remarks:

This is true for all species

Equations look that simple in conformal reference
frame ds2 = a(η)2 (dη2 − dx2)

For conformally coupled, but massive scalar meff = m0 a(η)

meff may be non-zero even for massless fields.

graviton is the simplest example m2
eff = −ä/a

Of particular interest are ripples of space-time itself

curvature fluctuations (scalar)

gravitons (tensor)
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Creation of metric perturbations

Data are in agreement with
Inflationary predictions
Ω0 = 1.0 ± 0.03,
ns = 0.99 ± 0.04

�

Derived parameters of the inflaton potential

m ∼ δT

T
MPl ∼ 1013 GeV

λ ∼
(

δT

T

)2

∼ 10−12
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Gravitational Creation of matter

Source of creation: msh a(τ )

It is effective at: H ∼ msh

Number density of created
particles: n ∼ m3

sh

New dark matter candidate →
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Coupling to the inflaton as a source
of creation

Scalar X
m2

eff = m2
X + g2φ2(t)

Fermion ψ
meff = mψ + gφ(t)

Relevant parameter:

g2 → q ≡ g2φ2

4m2
φ

Note: q can be very large since

φ2

m2
φ

≈ 1012
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Bose versus Fermi :
Scalar X
m2

eff = m2
X + g2φ2(t)

Fermion ψ
meff = mψ + gφ(t)

Bose stimulation.
Occupation numbers grow,
n = eµt

Pauli blocking.
Occupation numbers
n < 1

Explosive decay of the inflaton

Explosive decay of the inflaton

Quantum to classical transition

Quantum to classical transition

Non-thermal phase transitions

Coslab, 2004 – p.18



Bose versus Fermi :
Scalar X
m2

eff = m2
X + g2φ2(t)

Fermion ψ
meff = mψ + gφ(t)

Bose stimulation.
Occupation numbers grow,
n = eµt

Pauli blocking.
Occupation numbers
n < 1

Explosive decay of the inflaton

Explosive decay of the inflaton

Quantum to classical transition

Quantum to classical transition

Non-thermal phase transitions

Coslab, 2004 – p.18



Bose versus Fermi :
Scalar X
m2

eff = m2
X + g2φ2(t)

Fermion ψ
meff = mψ + gφ(t)

Bose stimulation.
Occupation numbers grow,
n = eµt

Pauli blocking.
Occupation numbers
n < 1

Explosive decay of the inflaton

Explosive decay of the inflaton

Quantum to classical transition

Quantum to classical transition

Non-thermal phase transitions

Coslab, 2004 – p.18



Bose versus Fermi :
Scalar X
m2

eff = m2
X + g2φ2(t)

Fermion ψ
meff = mψ + gφ(t)

Bose stimulation.
Occupation numbers grow,
n = eµt

Pauli blocking.
Occupation numbers
n < 1

Explosive decay of the inflaton

Explosive decay of the inflaton

Quantum to classical transition

Quantum to classical transition

Non-thermal phase transitions

Coslab, 2004 – p.18



Bose versus Fermi :
Scalar X
m2

eff = m2
X + g2φ2(t)

Fermion ψ
meff = mψ + gφ(t)

Heavy particles are
always heavy

Heavy particles are
massless at φ(t) = −mψ/g

Vasya
Superheavy Fermion creation
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Thermalization after Inflation
With R. Micha

Questions:

How system approaches equilibrium ?

When ? What is thermalization temperature ?

Are of general interest and important for parctical applications.
It influences:

Inflationary predictions

Baryogenesis

Abundance of gravitino and dark matter relics

Primordial fluctuations
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Approach:

Lattice simulations (as a guidance)

Kinetic theory

Consider simplest λϕ4 model
In conformal frame, φ = ϕ/a, and rescaled coordinates,

xµ →
√
λϕ(0)xµ, the equation of motion

�φ+ φ3 = 0

can be solved on a lattice and various quantities be measured

Zero mode, φ0 = 〈φ〉
Variance, 〈φ2〉 - φ2

0

Particle number, nk = 〈a†(k)a(k)〉
Correlators, 〈aa〉, 〈a†a†aa〉, 〈π2〉, ...
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Particle spectra on a lattice
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Complications:

Insufficient dynamical range in k

Hopelessly long integration time
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Simple kinetic description ?

Complications:

Occupation numbers are too big

Are anomolous correlators important ?

Zero mode never dies
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Turbulent spectra
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Re-scale the field and coordinates
by the current amplitude of the zero
mode

�φ+ φ3 = 0

Here xµ → xµ φ0 and therefore
k → k /φ0

Let n ∼ k−α. Theory of a stationary wave turbulence
(Zakharov, L’vov, Falkovich) predicts

α = 5
3

for 4-particle interaction

α = 3
2

for 3-particle interaction
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Self-similar evolution

At late times we expect self-similarity with conserved energy

n(k, t) = t−q n0(kt
−p)

Excellent fit to numerical data with q = 3.5p and p = 1
5
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3-particle interactions

Replace q3q2

q1 k

λ

by

λ

q2

q1

k

φ

3-paricle collision integral is proportional to the amplitude of the

zero-mode I
(3)
k ∼ ϕ2

0

Since zero-mode decays , one expects p = 1/15 ...(?)...
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Test of kinetic description
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Collision integrals and ṅ(k) at
η = 5000.

I
(3)
k agrees with ṅ(k) to the

left of the vertical dashed line

Red line: 3-particle collision integral, I(3)
k

Blue line: 4-particle collision integral, I(4)
k
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Test of kinetic description
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Thermalization
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n(k, t) = t−q n0(kt
−p)

The exponent p determines the rate with which a system approaches
equilibrium kmax(τ ) = k0 τ

p, where k0 = λ1/2ϕ0. Thermalization
will occur when k4

max ∼ T 4 ∼ λϕ4
0.
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Thermalization

At late times influence of the zero mode should become negligible and

p =
1

7

Time to thermalization τ ∼ λ−7/4 ∼ 1021.
Scale factor in comoving coordinates a(τ ) = τ and we find for
thermalization temperature

T ∼ kmax

a(τ )
= λ2ϕ0 = 10−26MPl = 100 eV .

One can use “naive” perturbation theory to estimate thermalization
tempreature.
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Three major epochs of reheating

V (χ,X) =
λφ

4
φ4 +

g

2
φ2χ2 +

λχ

4
χ4
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h=10g
h=100g

free turbulence

driven turbulence

parametric resonance

At large h and/or g the para-
metric resonance stops when
nχ are relatively low

h = λX/λφ, h = λXφ/λφ
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Three major epochs of reheating
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But particle distributons for
larger h and/or g move faster
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Conclusions

We identify three different stages of the Universe reheating

“Parametric resonance.” Fast exponential growth of energy in
fluctuations, but only a small fraction is transferred.

Driven turbulence. Linear growth. Major mechanism of energy
transfer.

Free turbulence. Long stage of thermalization.

Turbulent evolution is self-similar and in agreement with kinetic
theory developed by Falkovich and Shafarenko.

Estiamtes for reheating time and temperature are found.
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