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Introduction. Critical State.
Instability
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FIG. 2. MO 1mages showing dendntic flux structures formed near the edge of the MeBy film at applied fields, which n {a)-1c) are

#.=23, 3.2 and 74 mT, respectively. The dendntic structures for different £, differ m size, but not m flux density iimage brightness) along
the core of the mdividual branches,




Thermo-magnetic feedback




Avalanche like penetration in the Critical State
I. Maksimov (1994)
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Thermal softening of the pinning force leads to
instability




The 1nstability increment
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Motivation: “Avalanches”
without 1nitial critical state.
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Hot spot and layer

After a Heat Impact
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Hydrodynamics Instability of the Hot Spot

716 U, Bolz et al. | Physica C 388-389 (2003 ) 715-716

Fig. 3. 3D magneto-optical images of the flux density distri-
bution after 50 ns and of the final state at 10 K with an applied
field of 30 mT. The size of the area shown is 2.28 x 1.52 mm’
and the maximal magnetic field density 15 95 mT.

Fig. 1. Magnetic flux profiles after a time delay of 67.5 ns and
of the final state (T = W K, B, = 15.2 mT).




Instability of the Topologically Charged Hot Spot




Microscopic Basic Equations

TDGL Equations
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Hot spot relaxation




Hydrodynamics of Vortex Matter
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J-V characteristics 1n a resistive
state of the vortex matter

| el
160 | T = 78K -‘
150mT
i |
Il[‘.l ' 120 ]m} to the normal state |
—
- | ‘
k- ” '
= |
4“ — ¢ — *—-—
.
o!l o LA ]

P

1.5 m‘ 3 3 10° 4.5 10° 6 10°
J(A/cm? )

. Typical set of (J,E) curves at T = 7.8 K for the cool Nb fi



Basic Equations
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Geometry of the problem
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Dimensionless equations
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Normal domain at the front
b=>b(x-Vt), O=0(x-Vit)
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Sharp and smooth interface
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Normal domain
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Front velocity
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Evolution of magnetic flux
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Evolution of magnetic induction
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Temperature shock wave
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Flux front velocity versus Joule
power at the front

T I | | |




1.5

0.5

Velocity of the front

|

I

100



Linear analyses of instability
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Flux free area
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Positive temperature feedback
1s responsible for instability
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Development of Instability
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Critical velocity
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Conclusion

1. The avalanche is developed when the voltage-current characteristics of the
uniform superconductor in its resistive state provides significant screening
currents at the moving flux front interface. In this case, the small area of the
interface becomes normal.

2. The voltage-current characteristics in the resistive state of the Type-II
superconductor 1s the decisive factor for the mstability onset while its
development depends also on heat absorption properties of the sample.

3. The mterface moves with constant velocity determined by the Joule heat
released in the normal domain at the front. For v<pi+2 the heat at the flux front
vanishes. No mstability of the flux front develops in this case.

4. The positive feedback between excessive local temperature at the front and
Joule heat released there leads to instability. The hydrodynamics tangential
instability of the flux front destroys the flat front. The instability develops for
the flux velocities exceeding the critical value.
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