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Preliminary:
e The Euler and Navier-Stokes equations

The Euler equation for v(r, t) is the 2nd Newton’s law for the fluid particle:

Fluid particle Pressure
Acceleration Force
8v(r t)
p[ Y + (v - V)fu} — (=Vp) =0, Leonard Euler, 1741.

The Navier-Stokes equation accounts for the viscous friction:

0 t

[ ”g;’ ) | (v-V)v| +Vp= (pr) Av, Claude L.M.H. Navier, 1827,
Nonlinear viscous George Gabriel Stokes, 1845.
interaction friction

Osborne Reynolds (1894) introduced “Reynolds number” Re

R@:!guvvaV

- N2

as a measure of the nonlinearity of the NSE.




e Lewis Fry Richardson (1920) cascade model of turbulence:

“Big whirls have little whirls

That feed on their velocity

And little whirls have lesser whirls

And so on to viscosity”

L.F. Richardson, paraphrase of J. Swift

m
< Hurricane Bonnie, V- ~ 300—,

S
Reynolds number at H ~ 500m

Vo H
Re = T~ ~ 1010 > Recr ~ 102

v

Unstable H, V. -eddies create smaller Hy, Vi-eddies with Re > Req > Recr.
T heir instability creates Ho, Vo-eddies of the second generation, end so on,
until Re, of the n-th generation eddies reaches Rcr and will be dissipated
by viscosity: Re >Rey >Rer > ... >Ren_1 > Ren > Recr.



Andrei N. Kolmogorov-1941 cascade model of homogeneous turbulence:

I. Universality of small scale statis-
tics, isotropy, homogeneity;

II. Scale-by-scale “locality’” of the
enerqgy transfer;

III. In the inertial interval of scales

the only relevant parameter is the

mean energy flux € .

Re, > Re,> Re, > ... >Re > Re,~100
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1. One-fluid model for a turbulently flowing suspension
VL, G. Ooms A. Pomyalov [PRE, 67, 046314, (2003)]

e Basic idea of One-fluid Approximation: Statistical ensemble of all particles,
(partially involved in the motion of k-eddies) = two sub-ensembles of particles:

“fully comoving” fraction fcom(k) & ‘“fully resting” fraction frest(k)

[7oy (K)]?

[1 + mpy(K)]2
~(k) — turnover frequency of k-eddies

frest(k) = 1— fecom(k) = o — particle response time,

a. Effective Density of Suspensions (¢ — mass fraction) :

1+ 271pvy(k) }
[1 4+ mpy(K)]27

peir (k) = pe[1 4+ ¢ fcom ()] = pe{1 + ¢



e Basic idea of One-fluid Approximation: Statistical ensemble of all particles ,
(partially involved in the motion of k-eddies) = two sub-ensembles of particles:

“fully comoving” fraction fcom(k) & “fully resting” fraction frest(k)

[7oy (k)]?

[1+ 7py(K)]?°
~(k) — turnover frequency of k-eddies

frest(k) = 1— fecom(k) =

Tp — particle response time,

a. Effective Density of Suspensions (¢ — mass fraction) :

1+ 271py(k) }
[1 4+ oy (k)27

peir (k) = pe[1 4+ ¢ fcom (k)] = pe{1 + ¢
b. Fluid-particle friction

Mp — ¢ ps frest(k) _ ¢TD’72(]€) .
Tp Metr Tp pPefr(k) (14 @)1 4+ 27py (k)] + m5~v2(k)

Yo(k) =



e Basic idea of One-fluid Approximation: Statistical ensemble of all particles ,
(partially involved in the motion of k-eddies) = two sub-ensembles of particles:

“fully comoving” fraction fcom(k) & “fully resting” fraction frest(k)

[7oy (k)]?

[1+ 7py(K)]?°
~(k) — turnover frequency of k-eddies

frest(k) = 1— fecom(k) =

Tp — particle response time,

a. Effective Density of Suspensions (¢ — mass fraction) :

1+ 27py(k) }
[1 4+ mpy(K)]2)

peir (k) = pe[1 4+ ¢ fcom (k)] = pe{1 + ¢
b. Fluid-particle friction

Mp — ¢ ps frest(k) _ ¢TD’72(]€)
Tp Metr 7p Peff (k) (14 @)1 4+ 27py (k)] + m5~v2(k)
c. Effective interaction amplitude in the modified Navier-Stokes Eq.

Yo(k) =

IS Galilean invariant and conserves the total kinetic energy



e Budget of the Kinetic Energy in Suspensions

O .

O R) | ity + X _

Exact Ener Budget Equation:
9y J . 2 0t dk

— Energy spectrum of suspension: &(t, k) = pasr(k) k2 <|ka(t)|2> /27,

— 5(k) - energy flux on the scale k, that is # rate of energy dissipation,

due to the fluid-particle friction, vp(k).



e Budget of the Kinetic Energy in Suspensions

HE (¢, k)
2t

de(k)
dk

+ w(k)E(L k) + 0.

Exact Energy Budget Equation:

— Energy spectrum of suspension: &(t, k) = pasr(k) k2 <|ka(t)|2> /27,

— 5(k) - energy flux on the scale k, that is # rate of energy dissipation,

due to the fluid-particle friction, vp(k).
e Richardson-Kolmogorov Closure for £(k) & ~(k), turnover frequency:

E(k) = C1 [e(k)pess (Y373 (k) = Co[e(k) / pesr ()] 3K2/3

de(k) | e(k) 105 ¢ 7 (k)7 _
dk k(14 o)1+ 2~(k)mp] + [v(k)™p]?
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Energy flux Eq.:



e 3 Budget of the Kinetic Energy in Suspensions

Exact Energy Budget Equation:

0E(t, k)

de (k) _

2

+ v (k)E(L, k) + 0.

ot dk

— Energy spectrum of suspension: £(t, k) = perr(k) = <|vk(t)|2> /27,

— (k) - energy flux on the scale k, that is # rate of energy dissipation,

due to the fluid-particle friction, vp(k).

e Richardson-Kolmogorov Closure for £(k) & ~(k), turnover frequency:

E(k) = C1 [e(k)?perr (k)] Y/ 3k75/3,
de(k) (k)

v(k) = C2 [e(k)/ perr ()] 3K2/3

J

C1C2 ¢ vy(k)Tp — 0=

Energy flux Eq.:

Simplicity = effective analysis: (k) =

X{mﬁwLﬂﬁ+1+¢¢M1+@_

5+ 1+¢—/o(1+ ¢)

dk ko (14 @)1+ 2v(k)7p] + [v(k)71p]?

! J(k) ~ ¢

— In

1+ cam)]’ 4(1 + ¢)

S(kL)2/3 + 1+ 6+ \Jo(1+ )
S+1+¢+/o(1+0)
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Suppression & enhancement of turbulent energy by heavy particles

¢=1, 5=0.1

10° 10" 10° 10° 10°
kL

Energy of k-eddies in suspension

Energy of k-eddies in neat fluid
R(kL) < 1 —suppression of large scales due to the fluid-particle friction,

We found analytically: R(kL) =

R(kL) > 1 — enhancement of small scales due to the energy transfer

from particles to the carrier fluid.
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Suppression & enhancement of turbulent energy: theory vs DNS
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of Boivin-Simonin-Squires-'98
for ¢ = 0 (black), 0.2, 0.5 & 1

— (color) lower lines.

Black upper line: “Compensated”
spectrum for ¢ = 0 (pure fluid):
Eo(k) = E(k)(KL)®/3 . 1In the

inertial interval &p(k) =const.

Color upper lines: Spectra 5¢(k)

for ¢ = 0, “compensated” by our analytical solutions.
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Suppression & enhancement of turbulent energy: theory vs DNS
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for ¢ = 0, “compensated” by our analytical solutions.

Summary: Simple “One-fluid” model with K41 closure provide an
internally consistent analytical description of the turbulence modifi-
cation by particles: the dependencies of suppression or enhancement of

turbulence on 7pvy,, ¢, scale of eddies, and many other parameters.
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2. Clustering of particles & droplets in Space-homogeneous turbulence of
Compressible, Two-phase fluid, (water droplets in clouds, fuel droplets in in-

ternal combustion engines) [Elperin-Kleeorin-L-Liberman-Rogachevskii-Sokoloff-'02-04]

0
e Basic dynamical equation of motion: 8—? + V- -(w) =DAn =

o(t,r) =nlt,r)—n, = %—?—I—(U-V)@z—@divv + DAO .

n(t,r) — particle number density, D) — coefficient of molecular (Brownian) diffusion
v(t,r) — particle velocity, = u(t,r) — fluid velocity,

divu = 0, however due to the particle inertia, divwv £ O;
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2. Clustering of particles & droplets in Space-homogeneous turbulence

of Compressible, Two-phase fluid

0
e Basic dynamical equation of motion: 8—7; + V. .(nw) = DAn =
0O
@(t,T)Zn(t,r)—’r_L, — E—I— (’UV)@:—@ divo +DA@

n(t,'r) — particle number density, [J) — coefficient of molecular (Brownian) diffusion
v(t,r) — particle velocity, 7= u(t,r) — fluid velocity,

divu = 0, however due to the particle inertia, divv #= O;

In the comoving with the center of a cluster reference frame:

00
where w(p|t,r) = a particle velocity minus velocity of the cluster center p (t).
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2. Clustering of particles & droplets in Space-homogeneous turbulence

of Compressible, Two-phase fluid

0
e Basic dynamical equation of motion: 8—7; + V. .(nw) = DAn =

o(t,r) =n(t,r) —n, = %—?—I—(U-V)@:—@ divv + DAO .

n(t,r) — particle number density, D — coefficient of molecular (Brownian) diffusion
v(t,r) — particle velocity, &= w(t,r) — fluid velocity,
divu = 0, however due to the particle inertia, divwv #= O;

In the comoving with the center of a cluster reference frame:

00
where w(p|t,r) = a particle velocity minus velocity of the cluster center p (t).

Suggested Rigid-Cluster Model ©(plt,r) = A (1) 9(|r — P

) reduces the

problem to ODE for the cluster amplitude A (t), and

allows efficient analysis with physically transparent analytical results
16



One can consider separately:

e Effect of particles inertia: ©divw = “clustering” instability
OAq (t
In the rigid-cluster model: divw (p|t,r) — b(t) = 5;5( ) = —Aq(t) b(t)
¢ /
/TU nTy
= Aq(t) = Ag exp[—I(t)], I(t) = [ b(r)dr = > In, In(t)= [ b(7r)dr
0 n=1 (n—1)7y

Ac|(t)-Cluster amplitude, T, — correlation time of /—eddies = I, (t) ~ random
independent variables. Apply Central Limiting Theorem: I(t) ~ Sv/N¢, with
N =t/my, S? = In(t)%w~ b(t)?)wT2, ¢— random Gaussian variable,
($)e =0, (¢?)s = 1. Using (exp(A{)); = exp(A42/2).  After all these:

Mq(t) = (AL) o explain(@) 1], in(a) ~  (muldivan(plt, M1 a® > 0
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One can consider separately:

e Effect of particles inertia: o©divw = “clustering” instability
OA~ (T
In the rigid-cluster model: divw (p|t,r) — b(t) = 5;5( ) = —Aq(t) b(t)
t
= Aq(t) = Ag exp[—I(t)], I(t) = /b(T)dT After all these:
0

Mq(®) = (AL) o explain(@) 1], in(a) ~ (muldivan(plt, 112w a® > 0
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3 One can consider separately:

e Effect of particles inertia: ©divw = “clustering” instability
O0Aq (T

In the rigid-cluster model: divw (p|t,r) — b(t) = 52( ) = —Aq(t) b(t)

= Aq(t) = Ag exp[—I(t)], I(t) = /b(T)dT After all these:

Mq(8) = (AL) o explain(@) 1], in(a) ~ (maldivan(plt, M1 a® > 0

e Effect of turbulent diffusion: renormalization of molecular diffusion:
D by the effective turbulent diffusion D+ . D — D+D,, D, ~ £cve/3 =
= After some simple consideration =

D
Vaif () =~ —qe—QT ~
cl

4 Y 4
3£ 3Tcl’

Tc| turnover time of the /. -eddies
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e Estimate of the growth rate of clustering instability

Mg(t) = (|Aq(t)]) = Mg(0)exp(yqt), g = vdif(@) + vin(q) ,
2 2
qQ |, 4 : 2 q q
~ — div w ~ — |

o

di 2 2 4 4
<(|[V|vw]|2)> ~ <@> <E> = (ﬁ) compressibility parameter,
X w Pf n QA x

n — Kolmogorov microscale, a- particle radius.

For water droplets in the atmosphere n~1lmm, ax~ 30um;

For fuel droplets in a car diesel engines n~ 10um, ax ~ 40um .
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e Estimate of the growth rate of clustering instability

Mg(t) = (|Aq(t)]) = Mg(0) exp(yqt), Yo = Ydif (@) + vin(q),
2 2
q , g : 2 q q
~ — divw ~ — |
1q 3 T¢ | 2 <Tv[ ] > 3 T¢ | 2 Te 7

4
o~ (g> compressibility parameter, a- particle radius.
A x

For water droplets in the atmosphere n~1lmm, ax~ 30um,;

For fuel droplets in a car diesel engines n =~ 10um, ax ~ 40um .

Summary: For a > ax homogeneous particles/droplets distribution is
unstable = clusterization. In particular, the probability of particle-particle
collision <n2> x Mo(t) < exp(y>t) and finally increases in orders of
magnitude. Thus, the clustering instability of M» has reach consequences
for dynamics of water droplet in turbulent clouds, fuel droplets in diesel

engines, etc.
21



3. Simple model of Turbulent Boundary Layer: Space-inhomogeneous,
Near-wall turbulence of Incompressible, One-phase fluid (Atmospheric
TBL, channel & pipe high-R.e flows) [L'vov-Pomyalov-Tiberkevich-'03]

In our simple model of TBL:

— Space energy transfer is ignored with respect of local energy dissipation
—Only Local (in ) Mechanical Balance and Local Energy Balance
are accounted for.

— Space derivatives are estimated via distance to the wall.

Navier-Stokes Eq. = Exact Kolmogorov-41 inspired Model for

Local Mechanical Balance Eq.: Balance of Local Energy K (y):

dV (y) /
y W(y) = p'L, a2 by K(y) dV (y)
o TWW=r V()% + | () = W)
Y Y dy
/ dp 1 2
W(y) = — (uguy) , p = —— = const . K(y) == (Ju(r,)*), a, b~1
dx 2

22




e Analytical solution: We have two Eqgs. for the three objects:
Mean shear, S(y)y = dV(y)/dy, Kinetic energy, K(y) = %<u2> and
Reynolds stress, W (y) = — (uzuy):

e For mechanical momentum:  [vo+vp(y)] S(y) + W (y) =p' L, (1)
o Kin. energy: {[vo+vp()](a/y)? + b\ K@) /yI}K () = W(y)S(y), (2)
e Introduce simple TBL closure: W) =c2K@y) . (3).

Solve quadratic eq. (1)-(3) for S(y) & integrate. The result:
For yT < Yy =a/cy - Vt =4t . (4a)

For y+ > y+2

— JV

VEeH) = S iny(H) + B— A@T), B=2yt——

Y

+ 1 n {e(l—l—QﬁsKy{J_)

Ky Ky 4mK
> > -
YH) =T+ \/:t/Jr —yl T+ (25)771/2, R = /b, (4b)
2
Al = 2k2yd "+ 4R [Y () —y ]+ 1 |

Qmiy‘i' Two fit parameters: k & B .

22-2a



e Comparison of analytical profile (4) with experiment & numerics

— Prandtl-Karman profile VT = 2.51n y"’ -+ 5.5 consts. are used in (4)

25
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One sees that our simple
Algebraic Reynolds-stress
model, based on the exact
balance of mechanical
momentum, K41 inspired
model equation for the local
energy balance, and simple
TBL closure for W/K gives
analytical, semi-quantitative
description of the mean

velocity profile.
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Left: Profiles of the Reynolds stress W (z1): Black solid line — sim-
ple analytical model with cﬁ = 0.28; Blue dashed line — DNS data.
Red dash-dotted line — Improved model with fit function (*) for ¢(z71).
Right: Function ¢2(z1) = W(zT)/K(z1): Blue dashed line — DNS data,
Red dash-dotted line — suggested fit for ¢2(z1):

4+

2/ +\ — _ _ A %
c“(z7) =028 |1 —exp( 24) : (%)

24



— | —r‘:n | | | | | | Lol | | Lol
01 10 100 01 10 100

Black solid lines — simple analytical model with cﬁ = 0.28,
Red dash-dotted lines — Improved model with fit function (*) for ¢(z1)
Blue dashed lines — DNS data of R.G. Moser, J. Kim & N.N. Mansour.

Conclusion:
Improvement ¢(zT) #const. does not effect the mean velocity profile,

slightly improves Reynolds stress and important only for the Kinetic energy.
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Summary:

e \We suggested simple Algebraic Reynolds-stress model, based on
i) Exact balance of mechanical momentum,
i) K41 inspired model equation for the local energy balance, and
iii) Simple TBL closure for W/K.
e [ he model gives analytical, semi-quantitative description of the mean
velocity profile, and profiles of the Reynolds stress and kinetic energy
e [ he physical transparency and simplicity of the model allows its
generalization for turbulently flowing suspension, laden with
i) polymers, leading to a theory of drag reduction by dilute additives
of flexible polymers, (VL, I.Procaccia, A.Pomyalov, V.Tiberkevich, PRL, 2004)
ii) microbubbles (VL, AP, IP, VT PRL, submitted)

iii) heavy particles (atmospheric TBL over stormy see and deserts),
etc.
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