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OUTLINE I

— Definition of a plasma

e Plasmas

— Mathematical description of plasmas
— Plasma turbulence (vs fluid turbulence)

e Turbulent generation of zonal modes

— Zonal mode generation in magnetized plasma turbulence
— Zonal mode generation in quasi-geostrophic turbulence

A broad class of systems exhibits spectral condensation
phenomena. One example is magnetized plasma
turbulence, where large-scale zonal modes (ky =0) are
generated by an inverse energy transfer from unstable
drift-waves, despite the fact that the relevant
nonlinearity supports a direct energy cascade.



PLASMAS I

e A plasma is a gas with part or all the atoms dissociated into positive
ions and negative electrons: = a collection of discrete charged
particles moving in a self-consistent e.m. field: the fields af-
fect the particle orbits, and the particle orbits affect the field =
nonlinear system.

e Differently from a nonionized gas, charged particles generate e.m.
fields and thus can act simultaneously producing collective phe-
nomenon.

Depending on the plasma parameters, the relevant point
of view is either that of a collection of discrete particles,
or that of a fluid supporting currents, or that of both.



In this talk I will consider plasmas that are:
e fully-ionized (all atoms are ionized)

e neutral (equal number of singly-charged ions and electrons, with
total charge equal to zero)

e high-temperature (the potential energy of a typical particle due to
1ts nearest neighbor is much less that its kinetic energy - weakly-
coupled plasmas)

o strongly-magnetized (the dynamics is quasi-2D and closely related
to neutral fluids)

e classical (no relativity and/or quantum mechanics)

These kind of plasmas occur naturally in many physical settings
[stellar interiors and atmospheres, in gaseous nebulae, in
interstellar hydrogen|, and are routinely created in laboratories
studying fusion plasma physics.



DESCRIPTION OF PLASMAS I

KLIMONTOVICH EQUATION |(& Maxwell egns)

l ensemble average

neglect collisions

PLASMAKINETIC EQUATION > VLASOV EQUATION

l take V-moment

TWO-FLUID THEORY- . o
various approximations
l combine

ONE-FLUID (MHD) THEORY

various approximations

REDUCED MHD EOUATIONS



Klimontovich equation

It 1s the fundamental plasma kinetic equation: it describes the
plasma by taking into account the motion of all particles:
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Plasma kinetic equation

We are usually not interested in the exact motion of all the particles
in the plasma, but rather in certain average or approrimate
characteristics:

Ny(x,v;t) "% (Ng(x,v;t)) = fs(x,v;t) smooth!

where (---) is an ensemble average over an infinite number of
realizations of the plasma.

fs(x,v:t) is the (very large) number of particles of species s per
unit configuration space per unit velocity space.



smooth spiky
Setting :  Ng(x,v;t) = fs(x,v;t) + 0Ns(x,V;1)
E"(x;t) = E(x;t) + 0E(x;1)
B (x;t) = B(x;t) + 6/B(x;1)
we obtain the plasma kinetic equation

collective effects (smooth)
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dlscrete particle (colhslonal) effects (spiky)

When |[RHS|/|LHS| ~ 1/A < 1 we can neglect collisions:
Vlasov eq. [collective effects 4+ kinetic effects (particle-
wave resonances)|.



Two-fluid equations (w <K vg;)

The distinct feature of a plasma as a continuous medium lies in the

different responses of the electrons and ions, which induce collective

electromagnetic fields. A set of two-fluid equations derived by the
kinetic equation in the collisional limit 1s thus necessary
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16 equations in 16 unknowns: ne,n;, Ve, Vi, Te, 15, E, B



Plasma dynamics can have many characteristic time scales
(associated to various wave perturbations, time-variations of
background quantities, collision frequency between species, etc.) and
length scales (e- and i-gyroradius, collision mean free paths, etc.).

e The existence of different time and length scales can be used to
construct reduced set of equations containing a fewer number of
unknowns. (For example, a two-time scale approach can eliminate
high-frequency oscillations associated with Alfvén waves = get
equations to analyze the slower time-scale evolution of pressure-
gradient-driven instabilities, or electrostatic perturbations.)



THE PLASMA TURBULENCE
PROBLEM

Plasmas are turbulent

e Almost all plasmas are linearly unstable to a variety of waves

e The growth of the oscillations is nonlinearly saturated, leaving a
state of random fluctuations, or turbulence

e Turbulence leads to enhanced transport eftects
Approach

1. Identification of linear instability

2. Identification of the saturation mechanism, and calculation/detection
of the steady-state fluctuation levels (e.g. (E?), (R?), etc.)

3. Calculation of transport coefficients as functions of (E2), etc.

Step 2. 1s the real problem.



FLUID VS PLASMA TURBULENCE I

The term “turbulence” is used for plasmas in a broader sense than
in conventional hydrodynamics:

e Hydrodynamaic turbulence consists of a large number of mutually
interacting eddies:
Plasma turbulence consists of both eddies and oscillations.

o Hydrodynamic eddies have small relative velocities and therefore
interact over a long time (strong turbulence);
Wave packets in a plasma can interact over short times and can
separate from one another over large distances (turbulence can
range from very weak to strong).



Similarities
e Although most fluid research is 3D, many important fluid appli-
cations are 2D (geophysics), and this has strong similarities to
plasmas confined by a strong magnetic field (which shapes the

fluctuations to have a very long correlation length along the field
lines and are quasi-2D).

e In both fields most work has been done on quadratic nonlinearities

INS: (V-V)V: PL: (VE-V)V or (Vg-V)n].

e The closure problem s common: moment-based statistical closure
approximations provide a way of expanding a cumulant of some
order (say, 3) in terms of lower-order cumulants



Differences (more numerous!)

e A plasma supports a much larger number of oscillations ( “the plasma
wave zoo”), and most of them are made wunstable by inhomo-
geneities in the plasma parameters (n, T'), in the e.m. fields, and
in velocity space.

o Wave-particle resonance tmportant in plasmas = need to view
the plasma as a collection of interacting waves and particles:

— The linearized NS propagator describes viscous dissipation:

GR}IS = [—i(w - 'ékQu)] -

— The linearized Vlasov propagator describes both collective wave
effects and ballistic particle streaming (broaden by turbulence):

Glin £ {iP ( 1 ) + 7mé(w — k-v)} 5(v —v')

w— kv



e In plasmas, two facts conspire against the development of a well-
developed (Kolmogorov) inertial range: (1) the abundance of
linear dissipation mechanisms (Landau damping), which limits
the minimum excitable scale, and (2) the nature of forcing, often
better modeled by a self-limiting linear growth-rate term than by

an external, localized, random forcing.

e Spectral transtfer in plasmas: non self-stmilar, anisotropic, highly
nonlocal.



DRIFT-WAVE TURBULENCE IN
MAGNETIZED PLASMAS

[ will present results (generation of k; = 0 modes) derived from a
reduced two-field model (in n. and ¢) of low-frequency
electrostatic turbulence in a strongly magnetized
plasmas, relevant to tokamak physics.

e The basic linear oscillations are drift-waves (very similar to Rossby
waves in the geophysical context).

e These waves are destabilized by the presence of electrons trapped
in the magnetic potential.

e The turbulence is fed by the the unstable drift-waves in the
intermediate region of k-space.



Charged particle motion

d’r(t)
dt?

dr(t)

X B Lorentz force
dit
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induces gyrations, parallel streaming,
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... E x B and other drifts perpendicular to B :

ExB
0=qE +qvXDB g vV, =

B2

motion = perpendicular gyration
+ parallel streaming
x + perpendicular drift



Physics of E x B drift

e First half of the orbit: ion gains
E energy from electric field, F; =
+eE, hence increasing its v |
and r7, o< v | /By

© e Second half-cycle: it loses en-
J ergy (E contrary to the direc-
) tion of motion) and decreases
1ts 77 .
ons dectrons @ Difference in ry causes ion to

drift



E x B and diamagnetic drifts

Momentum equation for species s (i.e., fluid picture),

OV,
MmsTs o ot + (VS'V)VS — QSns,0<EO + Vg XBO)

Here, Eg and B are uniform, and ng g and ps o have a gradient in

the x-direction:

y
n(x)




e Ratio of linear inertial term and magnetic Lorentz force
mSnS’O(a-VS/at) W Mg
~ W

QSnS,OVSBO  we B eBy
e Neglect linear inertial term (drifts slow compared to gyration)

e Neglect nonlinear inertial term (linear problem)

e Equation of motion reduces to

e Taking X B we solve for Vg :

E x B drift diamagnetic drift: vp
ExB VposXBg

B(% QSns,OBg

VSJ_ —




Physics of the diamagnetic drift (vp ¢ = —TsVng s XBg/qsng ¢
RS SNl
e Through any fixed volume
’.‘ [ | element there are more ions
moving upward then downward
fffffffff (upward-moving ions  come

o g from region of higher density).
P ‘l= Q e Therefore, there is a fluid drift

€

perpendicular to Vng and By

Q (even though the guiding cen-
ters are stationary!)



Drift waves
At time ¢ we introduce a small electron density perturbation Ay:

|less dense




Dispersion relation for drift waves

W = Upjeky

e When ne and q?b are exactly in phase, the change in the density
perturbation due to vg is exactly 90" ahead of the original density
perturbation: purely oscillatory wave.

e In real magnetically confined plasmas, several effects (collisions, in-
ertia, trapping, etc.) limit electron mobility introducing a lag be-
tween ne and QE: density perturbation becomes self-reinforcing
(v is outward when the plasma has already been shifted outward,
and vice-versa): wave becomes unstable.



Nonlinear equations for stable drift-waves
e Cold ions, T; K Te (we; = eBy/m;), with inertia:
o 1—Inertia \v/ B
1¢X By
vii=0, vy =Vg+ Ny =-— e
0

—(vg'V )V ,¢

1 [ 9V, ¢

_|_
wc,z'BO ot

e [on continuity:

on;
a—tz—l—VL ng(vep +vp)] =0.
o Massless electrons, me <€ my:
Ne 6&
TLO - Te .

e (Juasi-neutrality: to first order we have n; = ne .



e NL drift-wave (Hasegawa-Mima) equation:

~

0 (27 = T 27 0p
(V%6 —38) = |Véx2-v| v - D, =0
o ion vorticity evolution  e—response inhomogeneity
—~—NN ~ N ——
D(v%) = % + v % =0
Dt Ot D’eay B

The low-frequency ion motion in the perpendicular plane (ion
vorticity evolution) sets up an ion charge density which is
neutralized by electron motion in the parallel direction (e-response).
Stable drift waves are driven by the perpendicular density gradient
(inhomogeneity).



Parallel between: 2D NS, NL drift wave, Charney equa-
tions

OV 21

~—+ (Vipx2)- V'V =0,

— V).

where v = V1Y Xz, w,

0 (2 i 2 0o
51 (V36 = 0) = [Vox2:V] V26 —up 5 =0,
where E = —V ¢, vp . « dng/dz, and w = k,vp /(1 + k*p?).
0 (2 i 2 0o
— (V26— 9) = [Vox2-V] V% vrg, =0,

where ¢ o< fluid depth perturbation, vg o< d(Q2,/H)/dz, and w = k,vg/(1+k*p%).



ZONAL MODE GENERATION
IN TRAPPED ELECTRON
MODE TURBULENCE

In a toroidally confined plasmas, part of the electrons are free to
follow the magnetic field lines (free electrons), while other are forced,
by the parallel gradient in the magnetic field, to remain within a
small volume of the plasma (trapped electrons ).

nested magnetic surface:

free particle trapped particle



e The drag between the trapped and the untrapped population intro-
duces a phase delay between ne and ¢, thus driving drift waves
unstable.

e Physically, the reduced ability of the trapped part of the electron
population to shield out any electrical imbalance due to the per-
pendicular ion motion favors instability.

e The driving free energy still comes from Vng # 0, and the growth
rate 1s < ¢, the trapping fraction.



Collisionless trapped electron turbulence

The linear evolution of drift waves, their nonlinear interactions, and
the trapping/detrapping of electrons in a strongly magnetized plasma
lead to semi-2D electrostatic turbulence.

A simplified fluid model is given by two coupled equations for
(effective) electron density and ton vorticity (CTEM model ):

ExB NL

(%S;’ J +v(n—¢)+ ’Ud@g_(yb = Voxz-Vn
% (1 — Vv’ - 6‘%/2) P(x,t) — ei/Ql/(n — @) +vg(l — 5i/2&)g_qyb
= —V¢x2-VV2¢

polarization NL



Effects of nonlinear terms (according to statistical
mechanics)

e At short A: spectral transfer dominated by polar. NL V¢ X z-V V¢
two quadratic invariants: energy and enstrophy = standard dual
cascade (inverse for energy, direct for enstrophy).

e At long A: spectral transfer dominated by £ x B NL VX z-Vn,
one quadratic invariants: energy = enerqgy to short scales (produc-
tion of enstrophy), in a manner that is not self-similar, anisotropic,
and highly nonlocal

e For long wavelength turbulence
Vox2-VV2h < VpX2:Vn

In our study we neglect Vpxz-VV2¢p nonlinearity
(simulations confirm unimportance of polarization at long
wavelengths)



Zonal modes

e In a torus, zonal modes are uniform in the poloidal and toroidal
direction (poloidal and toroidal wavenumbers equal to zero), but
vary radially.

e In 2D magnetized plasma turbulence [slab with § — y, r — z,
¢ — 2 |, zonal modes have ky =0, k; # 0.

Zonal modes and give rise to a zonally averaged flow.

ky=0
y

zona modes: kezk (p:O

s/
\




Linear growth rate Imf

Numerical results

Linear and nonlinear growth rates
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Energy histories

Total energy: Eiy =), E(k)
Zonal enerqy: B, = ka E(ky, k, =0) Turbulent energy: By = By — E,

— TOTAL; — — TURBULENT; ... ZONAL,all kx;
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Coupling between turbulent and zonal modes
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Enerqgy in turbulence saturates at higher levels when zonal modes
are artificially suppressed because nonlinear damping of
zonal modes 1s an energy sink for the turbulence



Spectral energy transfer

Time-averaged energy flux into (positive) or out of (negative) mode k due to

interactions with all remaining modes
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Summary of numerical results

In CTEM, the £ X B nonlinearity, V¢ Xz-Vn, has two effects:
e Produce nonlinear eigenmode, i.e., n(k) > ¢(k)

e drives zonal flows (as seen in simulations and experiments)

o damps zonal flows: for ky =0, y(ky =0)E(k; =0) <0

At saturation, energy is put into the turbulence by

linearly and nonlinearly unstable drift-waves, and is

transfered to zonal modes to balance their nonlinear
damping.



Why nonlinear damping of zonal (ky = 0) modes?

Energy in mode k,

Ek) = (14K — e/ D) gul? + e 22,

evolves according to
dF (k)

- 2y E(k) +T(k)

where 7' is the nonlinear spectral transfer (conservative: » ;. T'(k) =

0), and 2vF is the energy input rate:

1/20

Y E (k) = kyvgbe," "I (ny dg) — Vé‘t *|nk — ol

For zonal modes, v E(k) = —Vei/2|nk — ¢l° <.

Always damping in the nonlinear regime

[n(k) # O(1) o(k)]



Why energy transfer to zonal (ky = 0) modes?

e Saturation regime is wave-domainated: vhn ~ VNL < wp = work
with equations for projection coefficients of the nonlinear solution
into the basis set of the linear eigenmodes:

(n(k)) " (61( ))
¢( k) ¢hn ¢hn 52( )
(similar to the helical decomposition in rotating fluids where the
eigenmodes are helicity waves).
e Diagonalized system:
(@1(k)>+(’iw1 0 ) (51(k)): 1 ( bn )
Bo(k) 0 dwy ) \ Ba(k) )] Ry(k) — Ro(k) \ —bn

where

by = — > _(K'x2K)p(K)n(k — k'), Rj(k) =n"(k)/$}" (k) .

k/




e Anisotropy of spectral transfer \wp = O(1), d = v/wp K 1]

.o ky—0

wi ~ wp+1i — 0
o .. ky—0
Wy ~ 0° —10 — —10

so that

1 « 0  for ky # 0
Ri(k) — Ro(k) 1 for ky =0

The rate of energy transfer into zonal modes 1s
larger by a factor (1/6) > 1 than it is for transfer
into nonzonal modes



ZONAL MODE GENERATION IN
QUASI-GEOSTROPHIC TURBULENCE

Ref.: Chekhlov et al., Physica D 98 (1996) “The effect of small-scale forcing on large-scale
structures in 2D flows”

An homogeneous fluid on a rotating sphere obeys the barotropic
vorticity equation in the -plane approx. (Coriolis par. f = fo+ Sy)

0 OV, .0 .o an o
ot +\ 0(z,y) J+\Bax(j Q_dli::ivatign+ﬁ>\r§i/;
NL\trerm driving P i

e linear limit w/o forcing: planetary (Rossby) waves

w=—p (kx/k2>

e NL limit w/ S-term: classical isotropic 2D turbulence

e Full equation: interaction of 2D turbulence (isotropy)
with Rossby waves (anisotropy).



Asymptotic analysis
o for Kk — 00, [B-effect small: isotropic 2D turbulence with

Ex(k) = Cge?*k™3  Kolmogorov

o for £k — 0, B-effect relevant: Rossby waves dominate, and

Er(k) = Cr°k™ Rhines



Direct Numerical Simulation [¢ = 0 (ky = 0) and ¢ = £7/2 (kz = 0)]
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Most of the energy 1s funneled into modes with small ky
corresponding to nearly 1D, zonal structures



CONCLUSIONS I

e There is a broad class of systems exhibiting spectral condensation phe-
nomena. They are all characterized by:

— a competition between some type of symmetry breaking (routed in the wave
physics) and the isotropy of the nonlinearity, establishing a preferred direction
n

)

— a linear wave frequency which is minimum for k-n = 0,

— a spectral transfer to waves with k-n = 0 which is strongly enhanced, pro-
ducing global-scale flows and fields as a pronounced spectrum feature with
the minimum wave frequency.

o In CTEM turbulence of magnetized plasmas:

— (V¢xz:V)n NL term, both drives zonal modes to finite amplitudes and
contributes to the saturation of the turbulence via a nonlinear damping of
zonal modes.

— The nonlinear coupling between zonal modes (k, = 0) and turbulent (k, # 0)
modes reduces the turbulence level at saturation.



e In quasi-geostrophic B-plane turbulence:

— for k — 00, the f-effect is small = isotropic 2D turbulence with Kolmogorov
scaling [E(k) oc k=53]

—for £k — 0, the (-effect is relevant = Rossby waves dominate with Rhines
scaling [E(k) oc k™°]

— most of the energy is funneled into small k, zonal structures




