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•New hypothesis based on emergent gravity
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•Additional remarks



A bit of history on the Einstein Uni-
verse

• In 1917 Einstein proposed that the Universe could

be, on the overall, a three-dimensional sphere with

no other evolution than that provided by local physics.

He arrived to this proposal based on two main

ideas:

1. There should not be inertia relative to space.

2. The relative velocities of the stars are very small

in comparison with the speed of light.

To make this sort of equilibrium state for the Uni-

verse compatible with his geometrical field equa-

tions, he introduced the afterward famous cosmo-

logical constant Λ.



• The troubles with this model began this same

year, when de Sitter showed that starting with a

cosmological constant one can construct a non-

trivial cosmological model with no matter whatso-

ever.

• Weyl in 1923 and Eddington in 1924 pointed out

that the already observed redshift of spiral nebulae

could be accommodated in de Sitter’s model.

• In 1930, Eddington proved that Einstein’s static

Universe was unstable under homogeneous and isotropic

departures from the equilibrium state. The Ein-

stein model started to be considered as a possible

initial state for the Universe that once destabilized

would start to expand.

Eddington did not clearly analyze what could trig-

ger the development of the instability, but vaguely

associate it with the formation of condensations.



• Nowadays we know that the instability of models

of the Universe that are closed, and homogeneous,

isotropic and static on the overall, is a subtle issue:

1. If the equation of state of matter is such that

its associated speed of sound cs is greater than

1/
√

5 all the physical inhomogeneous pertur-

bations are neutrally stable. The Jeans scale

for the formation of condensations is a signifi-

cant fraction of the maximum attainable scale.

Therefore, for higher enough speeds of sound,

only the Universe as a whole could develop an

instability.

2. In order to really depart from the Einstein state

one would need a global decrease in pressure in

the entire Universe, at least in the simplest case

in which matter satisfies an equation of state.

This suggests that a static Universe describable

in the cosmological scales as filled with dust, for

which p = 0, could not be able to change its

static global state, but only develop instabilities

on smaller scales.



On the other extreme, a static Universe filled

with radiation could in principle exit from this

state towards a Friedman expansion by decreas-

ing its pressure. Here we will concentrate on

this later model and its instability.



Eddington’s instability analysis

Let us consider a metric

ds2 = −N2dt2 + a2(t)Ωijdx
idxj,

where N is the lapse, a(t) the scale factor and Ωij
the metric on the unit three sphere.

The total gravitational-matter action can be writ-
ten as

S = 1
16πG

∫
d4x

√
−g (R− 2Λ)−

∫
d3x

√
−g K

+
∫
d4x

√
−g p(gµν).

For our particular metric ansatz it reduces to

S = 2π2

8πG

∫
dt Na3

[
3
(
−ȧ

2

a2
1
N2 + 1

a2

)
− Λ

]

+2π2 ∫ dt Na3 p(N).

The specific form of p(N) depends on the matter
equation of state p = p(ρ) through the condition

N
∂p

∂N
= −(ρ+ p).



For example, for radiation ρ = 3p the previous

condition yields p = CN−4.

By looking at the previous action and having in

mind that we are interested on the analysis of the

static solutions of the system, we can define a dif-

ferent and simpler functional containing all the rel-

evant information:

Lst = Na3
[
3

a2
− Λ + p̃(N)

]
.

We will denote by p̃= 8πGp and ρ̃= 8πGρ, rescaled

energy density and pressure.

We can easily see that by varying Lst with respect

to N and a and setting N = 1 afterwards we obtain

(Λ + ρ̃)a2 = 3

(Λ− p̃)a2 = 1.

In the case of a Universe filled with radiation, ρ̃ =

3p̃, these relations give us the radiation Einstein

conditions

ρ̃ = Λ, a20 = (3/2)Λ−1.



By looking at the functional Lst, (setting N = 1),

one can also see that the Einstein point is not sta-

ble. Taking into account that the kinetic term for

the scale factor enters the gravitational action with

a negative sign, the local maxima of the functional

Lst will correspond to unstable points. This is just

the case for the Einstein point (one can perform

explicitly the second variation with respect to a to

check this local behaviour). This is essentially Ed-

dington’s instability.



Emergent gravity

• General relativity is commonly considered to be

a low-energy effective theory that emerges from

a deeper underlying structure. A particular real-

ization of this situation is suggested by the grav-

itational features showing up in many condensed

matter system (such as liquid Helium) in the low-

energy corner. These type of systems suggest that

both, matter particles and interaction fields, could

be different emergent features of the underlying

system: They will correspond to quasiparticles and

collective-field excitations of a multi-particle quan-

tum system. For example, in the phase A of 3He,

the quasiparticles correspond to Weyl fermions and

the collective fields to electromagnetic and gravi-

tational (geometrical) fields.



• Imagine now that a Universe of the Einstein type

was the effective result of describing the geometric

and matter-like degrees of freedom emerging from

the underlying structure. A photons-filled Einstein

Universe will have a specific temperature. In the

standard general relativity, the stability of the sys-

tem is analyzed under the assumption of adiabatic-

ity: There is no heat transfer in or out the Universe

because there is no “outside the Universe”.

• However, in the emergent picture described above

there is not any a priory reason to consider the sys-

tem as effectively closed (let us remark that this

is a non standard general relativistic behaviour).

Therefore, it is natural to ask what would happen

when perturbing the Einstein state if the tempera-

ture of the underlying structure stays constant. We

will not enter on what sets and controls this tem-

perature, but only assume that it is independent

from the behaviour of the effective Universe.



Free-energy-based analysis

Let us now take a completely different point of

view. Let us analyze what happen when the per-

turbation to the Einstein model is performed as

immersed in a thermal reservoir at a fixed temper-

ature. For that let us consider the free energy of

static gravitational configurations. The free energy

of the purely gravitational part of a static configu-

ration is determined by the Euclidean action of the

configuration:

F0 = − 1
16πG

∫
d3x

√
ge (Re − 2Λ) .

Here, the symbols Re and ge stand respectively for

the Euclidean curvature and Euclidean metric of

the configuration. We are assuming that a proper

Einstein-Hilbert behaviour is emerging in the low-

energy corner. Let us remain you that this is not

what normally happen in the standard condensed

matter systems we know of. In these cases the

Einstein-Hilbert behaviour is supplemented with non-

covariant terms.



Let us now consider the free energy of a gas of

photons (radiation) inside a curved but static ge-

ometry. The leading term in the temperature on

the free energy function is

F1 = −σ3
∫
d3x

√
ge T4(x) ,

where σ ≡ π2k4B/15~3c2 is the Stefan-Boltzmann

constant, and

T (x) =
T0√
g00(x)

the Tolman temperature; (we will see later that

there are other contributions to the free energy in

lower powers of the temperature). For the partic-

ular geometries we are interested in here, the total

free energy can be written as

F (a,N, T ) = F0 + F1 =
2π2a3

8πG

[
−

3N

a2
+NΛ−

p̃

N3

]
,

with

p̃ =
1

3
ρ̃ =

8πG

3
σT4

0 : constant.

From this free energy, associated with a static ge-

ometry filled with radiation at a temperature T0,



we can obtain the Einstein static condition. It cor-

responds to the one that extremises the function

F . Variation with respect to N with an afterwards

evaluation in N = 1 gives

(Λ + 3p̃)a2 = (Λ + ρ̃)a2 = 3.

Variation with respect to a yields

(Λ− p̃)a2 = 1.

Therefore we have found the same expressions

that before: The conditions for a static Einstein

Universe filled with radiation.

By inspection of the free energy function we can

see that now the Einstein static point is located at

a local minimum. This is the main point we want

to highlight in this work.

If the perturbation of the radiation filled Einstein

Universe were done under the influence of an ex-

ternally fixed temperature, (something outside the

realm of standard general relativity) then, the Ein-

stein point would be stable.



Intuitive explanation

It is not difficult to understand why this is the case.

The Eddington instability of the Einstein state is

based on the following fact. The contractive ten-

dency of matter operates strongly in short scales.

Instead, the expansive tendency of the cosmolog-

ical constant operates strongly in large scales. In

the Einstein point these two tendencies are ex-

actly balanced. However, if the universe is suddenly

made larger, the cosmological constant effect takes

over and expand further the Universe. Reciprocally,

if the Universe is made smaller the matter domi-

nates and makes the Universe to further contract.

However, in the case analyzed here, a sudden ex-

pansion of the Universe will be accompanied by

the introduction of more photons in the system

in order to keep the temperature constant in the

now larger volume. This increase on the amount

of matter completely counterbalance the cosmo-

logical constant tendency making the Universe to

contract back to its initial state.



Curvature corrections

The free energy does contain additional contribu-

tions in smaller powers of the temperature. In the

high-temperature limit T2 � ~2Re, the total free

energy for a gas of photons in a static spacetime

is [11,13]

F = − 1
16πG

∫
d3x

√
ge (Re − 2Λ)

−σ3
∫
d3x

√
geT4 + σ̄

∫
d3x

√
geT2[Re + 6ω2]

with

σ̄ =
k2B
36~

, and ωµ =
1

2
∂µ ln |g00(r)|.

In our particular case, this free energy yields

F (N, a, T ) =
2π2a3

8πG

[
−

3N

a2
+NΛ−

p̃

N3
+ 8πGσ̄

6T2
0

Na2

]
,

or expressing everything in terms of ρ̃ and denoting

the constant factor (8πG/σ)1/26σ̄ by the letter b,

F (N, a, T ) =
2π2a3

8πG

[
−

3N

a2
+NΛ−

ρ̃

3N3
+ b

ρ̃1/2

Na2

]
.



Varying with respect to N and a we find now

(Λ + ρ̃)a2 − bρ̃1/2 = 3,(
Λ−

1

3
ρ̃

)
a2 +

1

3
bρ̃1/2 = 1.

Manipulating these two conditions one obtains

modified Einstein conditions

Λ =
3

2a2
=

ρ̃

1 + 2
3bρ̃

1/2
.



Consistency check

Consider the following self consistent procedure:

Calculate first 〈ψT |Tµν|ψT 〉 on an 3-sphere of arbi-

trary radius a.

Then plug-in the result in the Einstein equations

Rµν −
1

2
Rgµν + Λgµν = 〈ψT |Tµν|ψT 〉,

for metrics of the type ds2 = −dt2 + a2dΩ2
3.

From here we can find the radius of the Universe

as a function of the temperature. The result found

is the same that we have found by varying the free-

energy.



Anisotropic instability

• In standard general relativity the Einstein point
for a Universe filled with radiation is also unsta-
ble against homogeneous but anisotropic pertur-
bations of the metric of the Bianchi type IX.

Let us calculate the free energy of static configu-
rations of the Bianchi IX type. The general metric
for these models is

ds2 = −Ndt2 +
3∑

n=1

a2nσ
2
n,

σ1 = sinψdθ − cosψ sin θdϕ,

σ2 = cosψdθ+ sinψ sin θdϕ,

σ3 = −(dψ+ cos θdϕ).

Now, the free energy for these configurations re-
sults

F (a1, a2, a3, N, T ) =
2π2a1a2a3

8πG
×

×
[
Na21
a22a

2
3

+
Na22
a21a

2
3

+
Na23
a21a

2
2

−
2N

a21
−

2N

a22
−

2N

a23
+NΛ−

p̃

N3

]
.

Again, it is not difficult to see that the Einstein
point is an extremum of this free energy a21 = a22 =
a23 = (3/2)Λ−1 = (3/2)ρ̃−1, and that it is a local
minimum.



Adjusting the cosmological constant

• Condensed matter systems provide examples in

which the vacuum pressure calculated through low-

energy mode expansions yield erroneous results.

For example, in a dilute BEC with repulsive inter-

actions we have

pV = −
1

2

∫
dp3E(p) < 0; E(p) =

√
c2p2 + p4/4m2

pV =
mc2n0

2
−

1

2

∫
dp3

(
E(p)−

p2

2m
−mc2 +

m3c4

p2

)
> 0

• A system with an stable vacuum has to have

pV = 0.

If one then inject some quasiparticles into the sys-

tem with pQ > 0, the system would have to provide

a modified pV = −pQ < 0 in order to stabilize itself.

In our analysis this adjustment is

p̃V = −Λ = −
1

3
σT4.
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