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RenyiRenyi and and TsallisTsallis statistics statistics 
and and 

their application to their application to 
turbulence and vortex tangleturbulence and vortex tangle

Toshihico Arimitsu (U of Tsukuba)
Naoko Arimitsu (Yokohama Nat’l U)
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Introduction

Turbulence in a wind tunnel
(Experiment conducted by Mouri)
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In this talk…
• We introduce the method of multifractal analysis

(MFA) which provides us with the expressions of 
the probability density functions (PDFs) in a 
unified compact analytical formula valid for 
various quantities in turbulence.

• The formula can explain, precisely, the 
experimentally observed PDFs both on log 
(showing their fat-tail part) and linear (showing 
their center part) scales.

log scale linear scale

Introduction
Introduction
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In this talk…
• It will be shown, first, in the analyses of two 

beautiful experiments of normal fluid turbulence:
– Bodenschatz et al. in the Lagrangian

measurement of fluid particle accelerations.
– Gotoh et al. in the DNS (Direct Numerical 

Simulation) with 10243 mesh size.
• Then, we proceed to analyze an experiment of 

superfluid turbulence to show MFA works also for 
this case, and to see if there appears some 
difference between classical and quantum 
turbulences:
– Maurer & Tabeling in the observation of tangle.

Introduction
Introduction
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A typical setup of the observation of fully developed 
turbulence behind a grid in a wind tunnel

inl

grid fully developed 
turbulence

ū mean velocity

Observe the wind 
velocities u(t) by a x-array 
hot wire prove.

The observed time series of the longitudinal 
velocity component u(t)-ū represents its chaotic 
changes in time.

(from U.Frisch, Turbulence 1995)
[m/sec]

)( utu −

[sec] t

by Mouri (2004)
Rλ = 249,
ū = 10 [m/sec]

[cm] 20in ≈l
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The velocity differences δu(t;δ t) = u(t+δ t) – u(t) for δ t = 3.3x10-5 [sec]
and δ t = 1.3x10-2 [sec] are shown. The former represents intermittent 
character, whereas the latter looks like mere fluctuating behavior.

The velocity differences 
are scaled by their 
standard deviations:

2) ;( ) ;( ) ;( ttuttutt δδδδδξ =

) ;( tt δξ

) ;( tt δξ

[sec] t

[sec] t

δ t = 3.3x10-5 [sec]

δ t = 1.3x10-2 [sec]

) ;( tδξ •

) ;( tδξ •

PDF

PDF

With the help of the Taylor 
frozen hypothesis, we can 
translate the time 
difference δ t into the 
spatial distance δ r by the 
relation, δ r = ū δ t.

δ r = 0.33 [mm]

δ r = 13 [cm]
Kolmogolov scale: η = 0.22 [mm].

Interm
ittency in a w

ind tunnel
Interm

ittency in a w
ind tunnel
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Intermittency in the energy dissipation rate Intermittency in the energy dissipation rate εεInterm
ittency in a w

ind tunnel
Interm

ittency in a w
ind tunnel

1x 2x x

We observe in the energy dissipation 
rate an intermittent behavior.

We would like to interpret this 
observation in the following way, i.e., 
the detector in the wind tunnel 
measures singularities passing 
nearby, and their distribution in real 
space is multifractal following the 
idear of Frisch and Parisi (1985) and 
of Meneveau and Sreenivassan
(1987).

The method of MFA is constructed 
under this interpretation.• strongest singularity near x1

• weakest singularity near x2
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An experimental “proof” of the 
existence of singularities

Observation of 
fluid particle accelerations 

conducted by Bodenschatz et al.
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60.5cm

48.3cm

Turbulence chamber (Turbulence chamber (BodenschatzBodenschatz))
homogeneous turbulenceE
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DNS by M. Tanahashi (TIT) 
at Reλ = 220.7

Q/(urms/η)2≥0.03,   Q : the second invariant of velocity gradient tensor

Trace the trajectory of a 
46-µm-diameter test 
particle in a turbulent 
water flow.

The test particle is a 
detector to find out a 
multifractal distribution 
of singularities in 
physical space, which is 
assumed to be the origin 
of intermittency.

Test particle floating in turbulenceTest particle floating in turbulence

●
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A sphere marks the measured 
position of the particle in each 
of 300 frames taken every 
0.014 msec (∼τη/201/2). 

The shading indicates the 
acceleration magnitude, with 
the maximum value of 
12,000 msec-2 corresponding to 
~30 standard deviations.

Rλ = 970

E
xperim

ent in a cham
ber

E
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This observation tells us that turbulence is composed of 
singularities in physical space. The test particle was kicked 
by the singularities, and was accelerated so significantly.

PDF of accelerations (PDF of accelerations (BodenschatzBodenschatz))

E
xperim

ent in a cham
ber

E
xperim

ent in a cham
ber



2004/8/21 
COSLAB@Lammi

T&N Arimitsu 13

Basics 
of 

Multi-Fractal Analysis
（MFA)
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• The multifractal analysis (MFA) starts with the scale 
invariance of the Navier-Stokes equation for high Reynolds 
number (incompressible fluid).

• “Singularities”, due to the invariance, appear in velocity 
derivatives, pressure gradients (i.e., fluid particle 
accelerations) and so on, whose degrees of singularity are 
specified by an exponent α. 

• The singularities specified by α are assumed to distribute 
themselves in physical space with a fractal dimension f(α).

• The probability P(n)(α) dα, to find a singularity within the 
range α～α＋dα at a point in physical space in the nth 
multifractal depth, is assumed to be specified, once 
appropriate multifractal spectrum f(α) is given. 

Intermittency in terms of Intermittency in terms of MaltifractalMaltifractal Analysis (MFA)Analysis (MFA)
(A&A cond-mat/0306042)

B
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• The multifractal analysis (MFA) starts with the scale 
invariance of the Navier-Stokes equation for high Reynolds 
number (incompressible fluid).

• “Singularities”, due to the invariance, appear in velocity 
derivatives, pressure gradients (i.e., fluid particle 
accelerations) and so on, whose degrees of singularity are 
specified by an exponent α. 

• The singularities specified by α are assumed to distribute 
themselves in physical space with a fractal dimension f(α).

• The probability P(n)(α) dα, to find a singularity within the 
range α～α＋dα at a point in physical space in the nth 
multifractal depth, is assumed to be specified, once 
appropriate multifractal spectrum f(α) is given.

Intermittency in terms of Intermittency in terms of MaltifractalMaltifractal AnalysisAnalysisIntermittency in terms of Intermittency in terms of MaltifractalMaltifractal Analysis (MFA)Analysis (MFA)
(A&A cond-mat/0306042)
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NavierNavier--Stokes equation for Stokes equation for 
an incompressible fluidan incompressible fluid
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• The multifractal analysis (MFA) starts with the scale 
invariance of the Navier-Stokes equation for high Reynolds 
number (incompressible fluid).

• “Singularities”, due to the invariance, appear in velocity 
derivatives, pressure gradients (i.e., fluid particle 
accelerations) and so on, whose degrees of singularity are 
specified by an exponent α. 

• The singularities specified by α are assumed to distribute 
themselves in physical space with a fractal dimension f(α).

• The probability P(n)(α) dα, to find a singularity within the 
range α～α＋dα at a point in physical space in the nth 
multifractal depth, is assumed to be specified, once 
appropriate multifractal spectrum f(α) is given.

Intermittency in terms of Intermittency in terms of MaltifractalMaltifractal AnalysisAnalysisIntermittency in terms of Intermittency in terms of MaltifractalMaltifractal Analysis (MFA)Analysis (MFA)
(A&A cond-mat/0306042)
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“Singularities”
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• The multifractal analysis (MFA) starts with the scale 
invariance of the Navier-Stokes equation for high Reynolds 
number (incompressible fluid).

• “Singularities”, due to the invariance, appear in velocity 
derivatives, pressure gradients (i.e., fluid particle 
accelerations) and so on, whose degrees of singularity are 
specified by an exponent α. 

• The singularities specified by α are assumed to distribute 
themselves in physical space with a fractal dimension f(α).

• The probability P(n)(α) dα, to find a singularity within the 
range α～α＋dα at a point in physical space in the nth 
multifractal depth, is assumed to be specified, once 
appropriate multifractal spectrum f(α) is given. 

Intermittency in terms of Intermittency in terms of MaltifractalMaltifractal AnalysisAnalysisIntermittency in terms of Intermittency in terms of MaltifractalMaltifractal Analysis (MFA)Analysis (MFA)
(A&A cond-mat/0306042)
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Now,

fractal dimension
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Distribution of α is essential to determine ζm.

・ : distribution for α
: multifractal spectrum

・ : mass exponent
: scaling exponents of VSF

・ Choice of P (α)
P model: Binomial distribution
Log-normal model: Gaussian distribution
A&A model: Tsallis-type distribution
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It is revealed in the analyses of experimental data that there are 
two mechanisms contributing to the PDFs, i.e, 

one is for the tail part, and 
the other for the center part.

connecting point

log scale linear scale

tail part

center part

log scale linear scale

center part

tail part

connecting point

*
nξ
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Structure of Structure of PDFsPDFs within MFAwithin MFA
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• The structure of the tail part represents the intermittent 
large deviations, 
– which is a manifestation of the multifractal distribution of 

singularities in physical space due to the scale invariance of the 
Navier-Stokes equation for large Reynolds number. 

• The specific form of the tail part comes from the 
distribution function P(n)(α) for the singularity exponent α,
that is represented by
– P model: Binomial distibution
– Log-normal: Gaussian distribution
– A&A model: Tsallis-type distribution

with the parameters which are determined by the observed value 
of the intermittency exponent µ. 

– Note that the parameter q in A&A model does not depend on the 
distance r between two observation points.

Tail partTail part
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• The structure of the center part represents small 
deviations 
– violating the scale invariance mainly due to thermal 

fluctuations.
• The center part is assumed to be given by 

– the Tsallis-type distribution function for the variable ξn
itself with the parameter q’.

– q’ depends on the distance r between two observation 
points.

– The dependence is extracted through the study of the 
PDF’s of velocity fluctuations.

Center partCenter part
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Extraction of singularities 
out of time series data
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E
xtraction of singularities

E
xtraction of singularities
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P Model
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Log-Normal Model
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A&A Model
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Thermal equilibrium distribution function
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Stationary state distribution function

q 1 gives us the Gibbs.
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Stationary state distribution function

q 1 gives us the Gibbs.
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HavrdaHavrda--CharvatCharvat--TsallisTsallis type distribution functiontype distribution function
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by Lyra & Tsallis (1998).

A&A model assumes that the distribution of α is given by the 
Havrda-Charvat-Tsallis (HCT) type distribution function 

with                           . Then, the multifractal spectrum has the form2ln)1(
22)( q

X
−=∆α

( )[ ].1 log1)( 2

2
0 )(

21
1

α
ααα

∆

−
− −−= qf

[ ] )1( 

)(
)(1)(
2

2
0

)( 1 )( q
n

Z
n

nP −

∆

−−=
α
ααα

A
&

A
 m

odel
A

&
A

 m
odel



2004/8/21 
COSLAB@Lammi

T&N Arimitsu 50

[ ] [ ]{ }
( ) ( )

.with 

)(|| for       
ln2

ln3
 11)(ˆ

)(||for     1)( 1 )(ˆ

232
0,

**

1   2

2
0,)(

**)1(1 2*
2

)('31)'1()(

20

)(

*)(

φζα

φφ

φα
φφ

δξξ

ααξξ
δφ

ξξ
ξ
ξξ

ααξξξξξ

−

−

+−

=

≥≤












 −
−Π=Π

≥≤−−Π=Π

nnn

nn

qn

n

nn

n

n
n

n

nn

-q'

nn
fq

n
n

Xn
qn

n

.by   defined is 1.4)~0.5(point  connection The 223*2** δξξξ ζ φα −=≈ nnnn

Here,                   is the solution of                      Here,                   is the solution of                      ..
is the scaling exponent of velocity structure function.is the scaling exponent of velocity structure function.

Remember that variables become singular for Remember that variables become singular for α <α < 11..

( ) 01322 =−+− αφαζ φ f1.1~0.1* ≈α

The The PDF PDF for for quqntityquqntity xxnn with the with the 

normalized variable                      is  given bynormalized variable                      is  given by2
nnn xx=ξ

nn
n

nn
n dxxd )()(ˆ )()(

φφ ξξ Π=Π

HCT-type distribution function  
representing not a simple power law

mς

φ=1: velocity fluctuations and derivatives
φ=2: fluid particle accelerations
φ=3: energy transfer rates
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Comparison in ζm
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ζ m = m / 3

ζ m = m / 3 - µ m(m-3) / 18

ζ m = m / 3 - µ (m-3) / 3

ζ m = 1- log2 [pm/3 + (1-p)m/3 ]
p = ( 1 + (2µ -1)1/2)/2

ζ m = m / 9 + 2( 1- (2/3)m/3 )

K41 (1941)

Log-normal (1962)

β-model (1978)

Log-Poisson (1994)

p-model (1987)

K41

β
-m

od
el

p-
mod

el

Log-Poisson

present model

Log-normal

○ Meneveau and Sreenivasan (1991)

C
om

parison
C

om
parison

Scaling exponents Scaling exponents ζζmm of velocity structure functionof velocity structure function
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Analysis of experiment 
conducted by Bodenschatz el al.

PDF of fluid particle accelerations
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Open squares and circles 
Experimental PDF by Bodenschatz et.al (2002) 

Lines
Theoretical PDF with q= 0.391 (µ= 0.240) by AA (2002)

ωn
†= 0.550   α†= 1.01 n = 17.1

( )n
n ω)(Λ̂ ( )n

n ω)(Λ̂

nω nωωn
†ωn

†

ωωnn : acceleration : acceleration 
normalized by its normalized by its 
deviationdeviation

q’=1.45

log scale linear scale

Let us analyze the PDF ofLet us analyze the PDF of particle accelerations particle accelerations 
observed byobserved by BodenschatzBodenschatz at at RRλλ=690.=690.

B
odenschatz

B
odenschatz
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Analysis of DNS 
conducted by 
Gotoh et al.

PDF of fluid particle accelerations
PDF of velocity fluctuations
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PDF of fluid particle PDF of fluid particle accelerationsaccelerations (Gotoh)(Gotoh)

Open squares and circles 
Experimental PDF by Gotoh et al. (2002)

Lines
Theoretical PDF with q = 0.391 (μ=0.240) by AA (2002)

ωn
† = 0.550 α†= 1.01 n = 17.5

ωωnn : acceleration : acceleration 
normalized by its normalized by its 
deviationdeviation

( )n
n ω)(Λ̂( )n

n ω)(Λ̂

nωnω
ωn

†ωn
†

q’=1.70

log scale linear scale

G
otoh

G
otoh
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Reλ = 220.7
by M. Tanahashi (TIT)

Q/(urms/η)2≥0.03,   Q : the second invariant of velocity gradient tensor

The velocity fluctuation
is measured at every 
two points separated 
by       .

nl
nl

Measurement of velocity fluctuationsMeasurement of velocity fluctuations
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Closed circles
Experimental PDF by Gotoh et al. (2002)
r/r/ηη from top to bottom: 
2.38, 4.76, 9.52, 19.0, 38.1, 76.2, 152, 
305, 609, 1220

Lines
Theoretical PDF with q = 0.391
(μ=0.240) by AA (2001)
n from top to bottom:
20.7, 19.2, 16.2, 13.6, 11.5, 9.80, 9.00, 
7.90, 7.00, 6.00
ξn

∗ from top to bottom:
1.10, 1.13, 1.19, 1.23, 1.28, 1.32, 1.34, 
1.37, 1.39, 1.43
q’ from top to bottom:
1.60, 1.60, 1.58, 1.49, 1.45, 1.40, 1.35, 
1.30, 1.25, 1.20
α∗= 1.07
n: number of multifractal steps

For better visibility, each PDF is shifted by 
–1 unit along the vertical axis.

PDF of PDF of velocity differencesvelocity differences (Gotoh)(Gotoh)

ξn : velocity fluctuation 
normalized by its deviation

ξn*

log scale

G
otoh

G
otoh
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Closed circles
Experimental PDF by Gotoh et al. (2002)
r/r/ηη from top to bottom: 
2.38, 4.76, 9.52, 19.0, 38.1, 76.2, 152, 
305, 609, 1220

Lines
Theoretical PDF with q = 0.391
(μ=0.240) by AA (2001)
n from top to bottom:
20.7, 19.2, 16.2, 13.6, 11.5, 9.80, 9.00, 
7.90, 7.00, 6.00
ξn

∗ from top to bottom:
1.10, 1.13, 1.19, 1.23, 1.28, 1.32, 1.34, 
1.37, 1.39, 1.43
q’ from top to bottom:
1.60, 1.60, 1.58, 1.49, 1.45, 1.40, 1.35, 
1.30, 1.25, 1.20
α∗= 1.07
n: number of multifractal steps

For better visibility, each PDF is shifted by 
–1 unit along the vertical axis.

PDF of PDF of velocity differencesvelocity differences (Gotoh)(Gotoh)
Central PartCentral Part

linear scale

ξn*

G
otoh

G
otoh
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Competion
among 

multifractal models
P model, Log-normal model, A&A model
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Competition in ζm

P model, Log-normal model, A&A model
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C
om

petition I
C

om
petition I
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Competition in PDF

P model, Log-normal model, A&A model
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A&A Model

log-normal Model

p Model

Competition in Competition in PDFsPDFs of fluid particle accelerations of fluid particle accelerations 
((GotohGotoh and and BodenschatzBodenschatz))

C
om

petition II
C

om
petition II
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Competition in Competition in PDFsPDFs of velocity fluctuations (of velocity fluctuations (GotohGotoh))

C
om

petition II
C

om
petition II
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Superfluid Turbulence

J.Maurer and P.Tabeling
Europhys. Lett. 43 (1998) 29-34
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① DC motor
② blades
③ Pitot tube

20cm

M
aurer &

 
M

aurer &
 Tabeling
Tabeling 8cm
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M
aurer &
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µ =0.326, α0=0.388, X =1.18  (q =0.543) 

Re ~ 2 x 106

M
aurer &

 
M

aurer &
 Tabeling
Tabeling
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Conclusion and Prospects
• We showed that A&A model explains 

experimental and simulational PDFs quite 
accurately both in classical and quantum 
turbulences.

• So accurate, we expect that we can extract 
useful information for underlying dynamics of 
the systems from their analyses.

• Several future problems
– Proof of the assumption of the multifractal distribution 

of singularities is in progress with the help of the data 
from the experiment in the wind tunnel and from DNS.

– Search for a dynamical foundation of A&A model is in 
progress.

C
onclusion

C
onclusion
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Vortex tangle in Vortex tangle in superfluidsuperfluid HeHe
• Since vorticity in superfluid is quantized, investigations 

of the vortex tangle in superfluid 4He and 3He are 
desirable in order to see what is the origin of the 
singularities and why their distribution is multi-fractal.
– If the singularity originates from the core of vortex.

Multifractality of turbulence in normal fluid can be related 
to various values of vorticities in the fluid.

The vortex tangle may be uni-fractal.
Tangle does not exhibit intermittency.

– If the singularity originates from the reconnection of vortices.
Multifractality of turbulence in normal fluid is related to the 

distribution of reconnection points in the fluid.
The vortex tangle may be also multi-fractal.
Tangle does exhibit intermittency.

• The analysis of simulations of vortex tangle conducted 
by Tsubota (Osaka City U) is highly desirable.

P
rospects

P
rospects
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Thank you for your attention.




