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Introduction

Turbulence In a wind tunnel
(Experiment conducted by Mouri)
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In this talk...

= \We introduce the method of multifractal analysis
(MFA) which provides us with the expressions of
the probability density functions (PDFs) in a
unified compact analytical formula valid for
various guantities in turbulence.

=« The formula can explain, precisely, the
experimentally observed PDFs both on log
(showing their fat-tail part) and linear (showing
their center part) scales.

. log scale - |7, linear scale
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In this talk...

= |t will be shown, first, In the analyses of two
beautiful experiments of normal fluid turbulence:

In the Lagrangian
measurement of fluid particle accelerations.

In the DNS (Direct Numerical
Simulation) with 10243 mesh size.

<« Then, we proceed to analyze an experiment of
superfluid turbulence to show MFA works also for
this case, and to see If there appears some
difference between classical and quantum
turbulences:

In the observation of tangle.
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A typical setup of the observation of fully developed
turbulence behind a grid in a wind tunnel

Observe the wind
4 velocities u(t) by a x-array
{ hot wire prove.

by Mouri (2004)

R, = 249,
7= 10 [m/sec]
¢, =20[cm]

u(t)—b_l I
Fig. 1.11. Homogeneous turbulence behind a grid. Photograph T. Corke and  [yy/gec]
g5

H. Nagib. (from U.Frisch, Turbulence 1995)

The observed time series of the longitudinal
velocity component u(t)-a represents its chaotic
changes in time.

L

t[sec]
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The velocity differences du(t;ot) = u(t+ot) — u(t) for ot = 3.3x10-° [sec]
and ot = 1.3x107[sec]| are shown. The former represents intermittent
character, whereas the latter looks like mere fluctuating behavior.

The velocity differences £50) |
are scaled by their 3
standard deviations:

£:60)=Su(t:61)] [(Susn?)

St=3.3x10%[sec] |  PPF

With the help of the Taylor o e, N ,_ | _
frozen hypothesis, we can t[sec] &(%61)
translate the time

difference St into the 600 | st=13x10%[sec] |  POF |

spatial distance or by the

: : o]
relation, or = g ot. g ' i |
| | . o

i : '

| |

Kolmogolov scale: n = 0.22 [mm].
or=13[cm]
([sed] | E(e:61)
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Intermittency in the energy dissipation rate ¢

a(x) =v(2) o« (&)

Q.4

2t

u A
0.07 0,08 0 LZF.{
Xq Xo

» strongest singularity near x,
» weakest singularity near x,
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We observe in the energy dissipation
rate an intermittent behavior.

We would like to interpret this
observation in the following way, i.e.,
the detector in the wind tunnel
measures singularities passing
nearby, and their distribution in real
space is multifractal following the
idear of Frisch and Parisi (1985) and
of Meneveau and Sreenivassan
(1987).

The method of MFA is constructed
under this interpretation.
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An experimental “proof” of the
existence of singularities

Observation of
fluid particle accelerations
conducted by Bodenschatz et al.
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Turbulence chamber (Bodenschatz)

homogeneous turbulence
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FIGURE I 1. Schematic representation of the flow between counter-rotating disks decomposed into (a) the

pumping mode and (b} the shearing mode.
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Test particle floating in turbulence

Trace the trajectory of a
46-um-diameter test
particle in a turbulent
water flow.

The test particle is a
detector to find out a
multifractal distribution
of singularities in
physical space, which is
assumed to be the origin
of intermittency.

laqureyd e ui Juswiadxg

DNS by M. Tanahashi (TIT)
at Re, = 220.7
Ol(u,d 1)?>0.03, Q : the second invariant of velocity gradient tensor
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Fluid particle accelerations
in fully developed turbulence

A. La Porta, Greg A. Voth, Alice M. Crawford, Jim Alexander
& Eberhard Bodenschatz

Rk =970

Labaratory of Atowic and Solid State Physics, Laboratory of Nuclear Studres,
Carrell Ulindvereity, s, New York Ta853-25010 SA

NATURE VOL 409 22 FEBRUARY 2001 | www.nature, com

A sphere marks the measured
position of the particle in each
of 300 frames taken every
0.014 msec (~t1,/2012).

The shading indicates the
acceleration magnitude, with
the maximum value of

12,000 msec2 corresponding to
~30 standard deviations.

laqureyd e ul Juswiadx3
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PDF of accelerations (Bodenschatz)
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NATURE VOL 409 22 FEBRUARY 2001 | www.nature.com

This observation tells us that turbulence is composed of

by the singularities, and was accelerated so significantly.

singularities in physical space. The test particle was kicked
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Basics
of
Multi-Fractal Analysis
(MFA)
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/ A schematic interpretation
" (The eddy of the nth generation

o .
’ in the length cascade)
¢t =0, (0,=27")
ou,
E =50u, = Idk@ kinetic energy per unit massinscale/ =k,
L. :
t, = % 5 eddy turnover time
_F Su’/ .
En="", = "/, - energy transfer rate that represents
therateof transfer of energy per unit mass
fromeddiesof size/, tothoseof size/, ,
2004/8/21 T&N Arimitsu
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| ntermittency in terms of Maltifractal Analysis(MFA)
(A& A cond-mat/0306042)

= The multifractal analysis (MFA) starts with the scale
Invariance of the Navier-Stokes equation for high Reynolds
number (incompressible fluid).

= “Singularities”, due to the invariance, appear in velocity
derivatives, pressure gradients (i.e., fluid particle
accelerations) and so on, whose degrees of singularity are
specified by an exponent a.

= The singularities specified by o are assumed to distribute
themselves in physical space with a fractal dimension f(o).

= The probability PM™(a) de, to find a singularity within the
range o~ o +dao at a point in physical space in the nth
multifractal depth, is assumed to be specified, once
appropriate multifractal spectrum f(a) Is given.

2004/8/21 T&N Arimitsu 15
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V4 J0O sdiseg

| ntermittency in terms of Maltifractal Analysis(MFA)
(A& A cond-mat/0306042)

= The multifractal analysis (MFA) starts with the scale
Invariance of the Navier-Stokes equation for high Reynolds
number (incompressible fluid).

= “Singularities”, due to the invariance, appear in velocity
derivatives, pressure gradients (i.e., fluid particle
accelerations) and so on, whose degrees of singularity are
specified by an exponent a.

= The singularities specified by a are assumed to distribute
themselves in physical space with a fractal dimension f(a).

= The probability PM"(a) da, to find a singularity within the
range a~a-+dao at a point in physical space in the nth
multifractal depth, is assumed to be specified, once
appropriate multifractal spectrum f(a) Is given.
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Nawvier-Stokes equation for
an incompressible fluid

ot

0 : the mass density
p . the pressure
v . the kimenatic viscosity

For high Raynoldsnumber Re= % >>1,

it isinvariant under thescaletransformation (o : real)

P AR, > ﬂ,@ﬁ, t —> ll@t, 2 ﬂ,z@%.
2004/8/21 T&N Arimitsu
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| ntermittency in terms of Maltifractal Analysis(MFA)
(A& A cond-mat/0306042)

= The multifractal analysis (MFA) starts with the scale
Invariance of the Navier-Stokes equation for high Reynolds
number (incompressible fluid).

= “Singularities”, due to the invariance, appear in velocity
derivatives, pressure gradients (i.e., fluid particle
accelerations) and so on, whose degrees of singularity are
specified by an exponent o.

= The singularities specified by a are assumed to distribute
themselves in physical space with a fractal dimension f(a).

= The probability PM(a) da, to find a singularity within the
range a~a-+dao at a point in physical space in the nth
multifractal depth, is assumed to be specified, once
appropriate multifractal spectrum f(a) Is given.
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“Singularities”

With the length ¢, =5, (5,=2") , these quntities are given as
follows.

ou
i =limu), = lim &a ~ lim¢
n—»0 (,—0 f ,—0
op,
d=lima, =lim==~lim¢ **  op, =|(p/pNe+(,)-(p/p)e).
n—>0 (,—0 én (,—0
a-1
‘.
g, =limg =lim -+ | ~Ilim¢*“
n—>0 ¢ ,—0 [o ?,—0
wherez- % , (;.5); istheacceleration of fluid particle.
ot
The velocity derivative, the acceleration and the energy transfer rate
become, respectively, singular for <3, < 1.5and < 1 in the limit
t —0,
When a <1, all these three quantities become large for each ¢ .
2004/8/21 T&N Arimitsu 19
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| ntermittency in terms of Maltifractal Analysis(MFA)
(A& A cond-mat/0306042)

= The multifractal analysis (MFA) starts with the scale
Invariance of the Navier-Stokes equation for high Reynolds
number (incompressible fluid).

= “Singularities”, due to the invariance, appear in velocity
derivatives, pressure gradients (i.e., fluid particle
accelerations) and so on, whose degrees of singularity are
specified by an exponent a.

= The singularities specified by o are assumed to distribute
themselves in physical space with a fractal dimension f(o).

= The probability PM™(a) da, to find a singularity within the
range o~ o +dao at a point in physical space in the nth
multifractal depth, is assumed to be specified, once
appropriate multifractal spectrum f(a) Is given.
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Now, comsider Sierpinski's triangular gasket shown in the upper graph
of Fig. 3.2, Putting the length of side of the lacgest " hblack triangle™ (n =0,

should appear at the leftimost position in the figoare but not shown ) be one, we
see that the number NV, of triangles appeared at the nth step (n =0,1,2,..+)
I CIvVer ]:u_'u.'

N, =3", (3.6)

ated that the leneth 4, of each side of the triangle by

Ay, =0 ", 0= 2 (3.7}
Then, we know that the total area S, of the "black trianles” hecomes
- ) :{I"J B Iil ..:' :{ L]
".r.ll = '."II'."_'I.I'T_. _ = (_ - :.:j:"":'
4 4 4

I[| the Lt - o, Ehis area TR down to zero.

Let us regard here that the "black triangles” with area S, occupies a
part of the D dmensional domain with “volume” 17, and that the number
of D dimenszional “hoxes” with edge length 4,, necessary to cover the "hlack
triangles” is given by

Equating (3.6) and (3.9), we get | A ‘ l"f:“
In3 A
fractal dimension | P = |:: Lo, AA lliﬂ .‘;.ﬂ::?..

2004/8/z1 I &N Armitsu 21
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I the case of Sierpinski's carpet given in the lower graph in Fig, 3.2,
putting the length of side of the largest "black square”™ (e = 0, should appear

at the leftimost B wition in the figare but uot shown) be one, we see that the

side length 8, of each black square in the carpet at the nthstep in=1,2,---)
= Civer |:_1.'

Ay =a ", d =3, (4.11)

andd that the nomber N, of "hlack squares™ in the carpet by
N =" (4. 12]

Then, we Enow that the total area “', of the " hlaclk hil'll-éll'l.':':“ turns ot to be

S =00 G = (ﬁ) . (3. 150

L the It — =0, this area also reduces to zero,

Now we consider that the "black squares” of area S, oceupy a part of the
D dimansional domain with “volmme” 1%, The number of the D dimensional
“hoxes” with side length 4, necessary to cover the “hlack squares™ is given

b
12
N,=——=d"=3"" (3.14)
I .-'u"_l i /
Equating (3.12} and (3.14), we have
In=
D= h 1.8, _ (3.15)
- fractal dimension

2004/8/21 T&N Arimitsu
COSLAB@Lammi



> [ejoeld < Y4IN JO sdiseg
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3.1.3 Probability to Find the Black Reagion

In the previous subsections, we have obtained three fractal dimensions e},
L,
= 1.26, (3. 16)

filkoch eurve) = Dl'{l,l—l.'ll CUrVe

FiSierpinski gasket) = DHil'rni]IHki gasket = 1.0, (4. 17

FiSierpinski carpet) = 1.5, [3.18]

B DHivrpin:—:l‘.] carpet

When one points a box with the side length o, on the paper sheet in
the regions ocenpied by the Koch curve, Sierpinski’s gasket or earpet, the
probability P (e ) to find the point bheing " black™ at the oth step may be given
by the ration between the number No{e) of the fle) dimensional "black”
Feozoes aned £l total number

b
Nototal = Ly (3.10)

- rL
it :_{

of boxes In the d-dimansional space, e

e = "f"'-” = gd-fle) (3.20)

-1I" I AR A |

In the present cases, the space is 2-dimensional papser sheet and the proba-
bilities are

Pu(Koch curve) = 621 = 4074, 321
P Sierpinski gasket ) = r'il"r L3 "IF:-: e (3.22)
P, (Skerpin=ki corpet ) = r'i'l':_"""" — -"-'::'I L (3.23)

I &N ATITTHSU

COSLAB@Lammi

23



V4 J0O sdiseg

6G.2.1 Singularity Distribution

MFEA starts with an assiginnent of the probability, to find a singularity spec-
itied by the strength o within the range o ~ a + da, in the form [5, 33]

.I III| -.Ifl:'ll_. r |.1|4'il.. A
P%{o)da = | f : I-I---| | r'l'lll_, ") de. (6.22)

| '-,.:l-:

Here. fl{a) represents an appropriate multifractal spectrum defined in the
FANZE i = 0 < 0. Note that f{a) does not dependent on n because of
the scale invariance,

2004/8/21 T&N Arimitsu
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The multifractal spectrum is related to the mass exponent 7(q), detined

Ly
FH e m— T3l —i s T
<(—) > = 3y '!"r.' +1-g |,[i'-2=j]
F
with
|I o 1 F
ase =] (ao)| (6.24)
\ 1£7(ag)] |
through the Legendre transformation [33]:
fla) = afq + 7(q) ((3.25)
with
dT(dq) :
=0 = —% I[:I;"'_J]
i
ane if
f | o) :
(] = e | [G,27 |
1 el L

The average (---) is taken with P'"!(a), and ap = az=0 = (a}.

2004/8/21
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The scaling exponent ,, of the mth order velocity strueture function,
defined by

{2, |™) o g fm (G, 2%)

is related to the mass eXronent h_k'

Lo l—T (I:) ; (6.29)

This is derived with the help of (6.9) and (6.158) as

! - i 3
=~ < i IR =HTE S - r'l. " g 5 — P . e )
¢ (lun|™) = a7 ‘<(T) > Ay, 1TV, (6.30)

2004/8/21 T&N Arimitsu
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Distribution of « Is essential to determine ¢..

P (a) distribution for o
- f(a) : multifractal spectrum

7(7) (= f(a)-cag) : mass exponent
-, (=1-7(%)) : scaling exponents of VSF

- Choice of P(a)

P model: Binomial distribution
Log—normal model: Gaussian distribution
A&A model: Tsallis—type distribution

2004/8/21 T&N Arimitsu 27
COSLAB@Lammi



V4 J0O sdiseg

Structure of PDFs within MFA

o] 0B
C (a) (b)
W .
A=
10° connecting point
tail part
]U_1D 3 -1_‘-1_.—'
e )
Sn &
It is revealed in the analyses of experimental data that there are
two mechanisms contributing to the PDFs, i.e,
® one is for the tail part, and
® the other for the center part.
2004/8/21 T&N Arimitsu 28
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¢t =0/, (0,=27")

1078

a>1, a<l

2004/8/21 T&N Arimitsu 29
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Tail part

= The structure of the tail part represents the intermittent
large deviations,

— which is a manifestation of the multifractal distribution of
singularities in physical space due to the scale invariance of the
Navier-Stokes equation for large Reynolds number.

= The specific form of the tail part comes from the
distribution function P("(¢) for the singularity exponent ¢,

that is represented by N T

— P model: Binomial distibution

— Log-normal: Gaussian distribution  |x, | =85 & e —
— A&A model: Tsallis-type distribution

with the parameters which are determined by the observed value
of the intermittency exponent .

— Note that the parameter g in A&A model does not depend on the
distance r between two observation points.

2004/8/21 T&N Arimitsu 30
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Center part

= The structure of the center part represents small
deviations

— violating the scale invariance mainly due to thermal
fluctuations.

e The center part is assumed to be given by

— the Tsallis-type distribution function for the variable &
Itself with the parameter q'.

— Q' depends on the distance r between two observation
points.

— The dependence is extracted through the study of the
PDF’s of velocity fluctuations.

e de, = | e, )+ A (x,)| da,

_ iy Ao+ 3 ) | £,
=™ 41 —0(1—4q" - : (“‘—
_'Il.l _'\-\...._
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Extraction of singularities
out of time series data

2004/8/21 T&N Arimitsu
COSLAB@Lammi

32



sanLe|nbuis Jo uondelxy

Let us introduce the total dissipation rate £, at the nth step (d = 1} by
E"r.' - "rrrrr [‘_J-}

and it= generating uncetion 2, per unit length by

[ L'

. o bl | — | o c=Tlgy = |'.,r.|‘II =

-‘Ell o (F) 0y, = 34 ., V= gy rl:li'i-I ll (7.2)
“1l

where we used (5.23) and the detinition of the generalized dimension (3.45).
Sinee the dissipation rate €, 15 proportional to the square of the velocity
derivative at the nth step, 1.e.,

; .
£ 0 b (a7, (7.3}

we can extract the generalized dimension Dy from the experimental data of
velocity derivative. Furthermore, with the help of Tavlor's frozen hyvpothesis,
the velocity derivative is proportional to the thime derivative of velocity field.
Therefore, we see that the seneralized dimension can he estinated from the
time series data of velocity tield through (7.2). —

, Thimeed
= =1 ] Tk aln

2004/8/21 T&N Arimitsu v
COSLAB@Lamml Fig. 5.3, Comvalized b ipion I, wil p = 002K {y
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Intermittency in the energy dissipation rate ¢

e(x) 2 V(&) o

0.4

L
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From Z_, we can
extract Dq.
r{gq) = (1= q)Dy.
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The distribution function P (a) lor the p model [29,33] is specified hased

on the binomial |||I|l1’ii:h:';|1’ik‘!' process in the form lJ.]

1 1
Zim [2y¥(1 — ) -v)n

P\"Ha) =

with
o + log, (1 — p)

l:u__'h._{[[ 1 — Ju] .-",|”]

y=1qly) =

and the partition function

for n = 1.

The multifractal spectrum is given by

_f'[rl | = — {.’.r”:” | |u_f_t;3 iyl ) + “ — yin :I] |ng2 l| — yin J” :

which leads to the mass exponent

2004/8/21 T&N Arimitsu
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The parameter p aredetermined by theconditons
<(8n /8)2> — 5nEE

Notethat (---) istaken with P («).

L+ V2 — 1
) = . .

==

2004/8/21 T&N Arimitsu
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Log-Normal Model
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In the log-normal model [18-20)], one consider the ratio e, /e,y (n = 1,2, - 1)
as independent stochastic variables, and apply for n 2% 1 the central limit
theorem to the swnmation of their logarithoms,

] e £ 1 E, n
_Zm("—) = —— n(2)= 7z (L-ama, [ (674

\ KT s 1—1

tia hzl‘ﬁ* t e '::::IIIH!-\.i:I]_]_ -:|L:~=.H'i|1l]l‘iu1| futietion

|'—
I

1I,' 2ira?

1,|.—||I||—u..-|:."3.-.'-""': I:[ill_rl:l

P a) =

for the range —o0 << & < 00, Here, we used 1‘111*.4:':11111;__" relation (0.18) hetween
£, and a. Then, we have the multifractal spectrnn and the mass exponent
in the forms

= {“ —f'lu]l'L . Y
1 ol r
flo) 1 27 ln b [, i lr)

and l
.Lr;I—l—rL||r,r+ “lu é, (6.77)

1'|_':-:]:11:'I_'l1..'1=|_1.,'. We see that
ag = 1. (6.78)
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Two parameterse,,, o aredetermined by the conditons

(e, /) =1, ((e, /e ) = 5
Notethat (---) is taken with P ().

ERjp — |. T I; :||._I|1..|
il]i-l r
P T (6.80)
I b
[Menr, we have
" 1) — |I||I'.
flo)=1- Mi.=1)
25
and
gl =11 —rJ':j'_-i',l. (6,82

with the weperalized dirpension
Ly=1— /2, (G,5:3]
which are the same as derived 1|- We know that

g = £y — r"-"|i- 1G5

2004/8/21 T&N Arimitsu
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A&A Model
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Gibbs statistics

S=-2 p;/Inp,
2. p=LU=) pE
Thermal equilibrium distribution function
p.=e"7, 7= Ze‘ﬂEl‘
20048121 T&N Arimitsu
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Renyi statistics

Stationary state distribution function

p=h-@-apE U)o Zo-Yh-0-0pE-v)les

q

g =2 1givesusthe Gibbs.
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Additive

S, (A+B)=S,(A4)+S,(B)

T&N Arimitsu
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Havrda-Charvat-Tsallis statistics

2. pl -1
S, ===
q

Zipini
2.7 =k U= 2. P!

I

Stationary state distribution function

Z

q

D= 1 l:l_ (l—q),B(Ei_Uq)}%lq) z zz{l_ (1-9)B(E,-U,)

—1_ —71-q
Z Z,

g =2 1givesusthe Gibbs.

2004/8/21 T&N Arimitsu
COSLAB@Lammi

:l%lq)

45



>Slj[es1< [8PoW V8V

2004/8/21
COSLAB@Lammi

Pseudo-additivity

S, (A+B)=S_(A4)+S,(B)
+(1-9)S,(4)S,(B)
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[SPoWl VY

Takingan extremumof thegeneralizel entropy
,[P(@))=|[da Py ~1)/a-q) (Tsallig

5,[P@)=|In[ da Py |/1-q) ~ (Renyi)
with theconstraints
jda P(a) = congt, jda P(a)"(a - ao)z/j da P(a)? = aqz,

wehave

)2 (@) = [P(Ol)] Z( - [ (a—)* ]/1—q)

(Aa)?

with (Aa)? =Landa ? :L.
(1-¢)In2 “ (8-¢)In2

The multifractal spectrum can be extracted as (P™ (a) oc 5.7
_ (0!—050)2
f(a) —1_ﬁ|092[1_ (Aar)? ]

The parameters q, a,, X are to be determined.
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Havrda-Charvat-Tsallistype distribution function

fa Pﬂ.{ﬂ o pqli.'l]‘\

L
|
g
Fignre 5. The oue-jump distrbutions polr) for typical valoes of g The § = == distribation i= the uniform one in the
interval [—l. IJ y=1 Al § = & DeEpe tively -.;:-l.l-.ﬂ-|.ll.|:||-:|. Lo Craazsian and Lorenteian distnbations: the g — 3 i |-;;.|||_‘;.'||-|.--||,-

flai. For TR there ia a cul-oll al || I_."-'.r = [{d = |_|'|,l'| ] — .-Ill!.".
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A&A model assumes that the distribution of a is given by the
Havrda-Charvat-Tsallis (HCT) type distribution function

pn (o) = z(l") [1_ (a-ao) ]%l—q)

(Aa)?
with (Aa)* =2 .2 . Then, the multifractal spectrum has the form

fla) =1~ log, |1~ ©-= |

Three parameterse,, X, g aredetermined by theconditons
2
(e./e) =1, ((e, /e ) =62, &=L -L.
. . =0
Notethat (---) istaken with P" (). fla)
- “ (A generalization of the
7 s scaling relation proposed
= Ve by Lyra& Tsallis (1998).
P V4
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The PDF T10(&,)dé, =11 (x,)dx, for quontity x, with the
normalized variable ¢ -/ [((x2))is given by

ﬁ;n)(é:n) _ ﬁ;n) {1_ (1—61')[1+32f'(a*)/¢] I:(gn /gn*)z _1] }]/(1-4') for |‘§n |S (:n* (0[ > a*)
2 ”/(1_9)

~ (n) = g_n _]__q (3In fn/é:no) . .

I1,7(&,) =11y : [1 " 25°X|Ins, for &, <|¢,| (a 2a)

with |£, | = £,8,%%/* %/,
‘(’5”'0‘ 510 HCT-type distribution function
{ ¢ =1: velocity fluctuations and derivatives representing not a simple power law

[SPoWl VY

¢ =2: fluid particle accelerations
¢ =3: energy transfer rates

The connection point &, (=~ 0.5~ 1.4) isdefined by & =& 52/ </,

Hereo' ~1.0~1.1 isthe solution of ¢,,/2-¢a/3+1- f(a)=0.
¢» 1Sthe scaling exponent of velocity structure function.

Remember that variables become singular for o < 1.
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Comparison in ¢,
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Scaling exponents ¢, of velocity structure function

o >
S O
3 Q’QO q?@é@
A \ O m
6IIIIIIIII|IIIIIIlI_.'|._,I|IIIIII.!.__rIIIII_I_ <(51/ln) >OC£n@’D
i P " d
=t {—\/ff e D‘e"emm()d
= y o S - +*- J ( )
" - i =|da---P(a).
O 7 ;}( {’
J i ’r %4‘ o Meneveau and_Sr eenivasan (1991) K41 (1941)
=
- _. = _
_Q, il _J" 6 "~ l ,=m/3
2{ ‘“~_~Log-normal L og-nor mal (1962)
0 r n=0.238 N, - ¢, =m/3-umm-3)/18
=
5 [:IIIIIIIIIIIIIIIIIIIIIIIIIIII'IIIIIII B-mOdeI(1978)
0 10 20 . 30 TS
_ Gom 2X m? 1 /
Sm = "3 — 9(1++/C,1/3) " 1-g [1_ |ng(l+ Cm/3 )] p-model (1987)
with present model (2000) ¢ =1-log, [p™ + (1-p)™3 |
C.=1+2Xg°(1-q)In2 p=(1+(2-)¥)2
L og-Poisson (1994)
\/— Jag+(1- 61) -(1-q) b _ q-pet
~ (I-q)In2" €.,=m/9+2(1-(23)™3)
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Analysis of experiment
conducted by Bodenschatz el al.

PDF of fluid particle accelerations
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Zreyosuapog

Let us analyze the PDF of particle accelerations
observed by Bodenschatz at R ;=690.

~n 10" ~n
A )(a)n) (a) A (@,) _ (b)
. log scale \ linear scale

107"

os| A q'=1.45

w, . acceleration
\ normalized by its
3 deviation
107 -
UT 20 40 0 T 1 2
.1 0, .’ @

Open squares and circles
Experimental PDF by Bodenschatz et.al (2002)

10

107

Lines
Theoretical PDF with g= 0.391 (u= 0.240) by AA (2002)

0=0550 o'=101 N=17.1

Profadd iy
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Analysis of DNS
conducted by
Gotoh et al.

PDF of fluid particle accelerations
PDF of velocity fluctuations
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PDF of fluid particle accelerations (Gotoh)

[\(n)(a)n) ]\(n)(wn)
10 1 .
log scale (a) linear scale )
it
0.4 q’=1.70 ,
@y . acceleration
normalized by its
. deviation
1L
Hi‘nﬂﬁb %"-u,nn__““
-\.__\___. 0 ]
L 10 21K L 1 £
T , I ,
' '
Open squares and circles
Experimental PDF by Gotoh et al. (2002)
Lines
Theoretical PDF with g = 0.391 (£ =0.240) by AA (2002)
©,F=0550 =101 n=1/7.5
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Measurement of velocity fluctuations

The velocity fluctuation
IS measured at every
two points separated

by ‘.

Re, = 220.7

/ , : . - i by M. Tanahashi (TIT)
>0.03, : the second invariant of velocity gradient tensor
R 0 y 9
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log scale

PDF of velocity differences (Gotoh)

Closed circles
Experimental PDF by Gotoh et al. (2002)

r/n from top to bottom:
2.38,4.76,9.52,19.0, 38.1, 76.2, 152,
305, 609, 1220

Lines
Theoretical PDF with g = 0.391
(1 =0.240) by AA (2001)

n from top to bottom:
20.7,19.2,16.2,13.6, 11.5, 9.80, 9.00,
7.90, 7.00, 6.00

&+ from top to bottom:
1.10,1.13,1.19,1.23,1.28, 1.32, 1.34,
1.37,1.39, 1.43

g’ from top to bottom:
1.60, 1.60, 1.58, 1.49, 1.45, 1.40, 1.35,
1.30, 1.25, 1.20

-.ﬂl

a=1.07
n: number of multifractal steps

For better visibility, each PDF is shifted by
—1 unit along the vertical axis.

&y - velocity fluctuation
normalized by its deviation
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PDF of velocity differences (Gotoh)

Central Part

linear scale

Closed circles
Experimental PDF by Gotoh et al. (2002)

r/ n from top to bottom:
2.38,4.76,9.52,19.0, 38.1, 76.2, 152,
305, 609, 1220

Lines
Theoretical PDF with g = 0.391
(1 =0.240) by AA (2001)

n from top to bottom:
20.7,19.2,16.2, 13.6, 11.5, 9.80, 9.00,
7.90, 7.00, 6.00

&.* from top to bottom:
1.10,1.13,1.19, 1.23,1.28,1.32, 1.34,
1.37,1.39, 1.43

g’ from top to bottom:
1.60, 1.60, 1.58, 1.49, 1.45, 1.40, 1.35,
1.30,1.25,1.20
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1~

*

a=1.07
n: number of multifractal steps

For better visibility, each PDF is shifted by
—1 unit along the vertical axis.
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Competion
among
multifractal models

P model, Log-normal model, A&A model
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Competition in

P model, Log-normal model, A&A model
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| uonnadwo)

4|lr|l||r|1|,1|-|-|||lr-|'-|
o -

(a)

L 6 & & § ¥ @ w4 8 § o4 & 34 44 i@ | F T TR PR W |

0 10 w20 6 8 10

i

Fig, 6.4, Anpalysis of the sealing expomnis O of velocity stroctore function ex-
tea lest) Frcimn Uhe ITVNS sl isebed ]'." Cacitoaly ok ql, ||.'.' (1 ITE IR 1 hesapet josil cuapvie
(=lial Bines), Thosse Doy BoAL (ddottesd Dinaed, Gl bog- el bl {closlesd Thone) ancd
Pl promoclel (dot ted-cpshedd Tine) are also shown for comparscn,

The sealing exponents (,,, of velocity strueture function reported by Gotol et
al. [27] are analyzed in Fig. 6.4 by the method of the least squares (MLS) with
the theoretical formulae of the hanumonions representation, of the log-normal

model and of the p model. giving, respectively, the values of the ntermittency

exponent p = 0,240, 0.217 and (.249 (see chapter 7, for detail).
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Competition in PDF

P model, Log-normal model, A&A model
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Competition in PDFs of fluid particle accelerations

(Gotoh and Bodenschatz)

[| uonnadwod
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)

A (@)

ald

_|.|'II_._._|_I_|_._._._|_|_|_._._.

150 0 : 2

n "

Fig. 68.6. Analyses of the PDF s of fTud porficle occelembions, measured by Gotoh
et al, at Ny = 380 (cireles in the top et and ||_‘.' Bodenschatz ot al. at N, = 690
{eircled in the hottom set), by means of the PDF's A" e, b by the harmonions
representation (solid line) and by the leg-normal model (dashed line) are plotted on
{a) log and (b linear scales, The PDE's by the p model (dotted line ) are compared
with the PDF's by the harmonious representation (s lid line), Results are ||'I.-|||:1_‘.'l-l|
in pairs, The solid lines in each set o pairs are the same. For better visibility,
each PDF s shifted by —2 unit in (a) and by =04 in (b) along the vertical axis
Parameters are siven in the text,
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Competition in PDFs of velocity fluctuations (Gotoh)

Fig. 6.5. Analyvses of the PDF's of the velocity Huctuations {(closed circles) for
three dilferent measuring distances, observed by Gotoh et al, st /5, = 380, with the
l'll'||| of the PIVFs 1™ EL by the harmonions representation (solid line) and by
Pl Jose=niowrnnn] odel (daslhie] e ) are plotted on (o) log and () linear scales, The
PDF s by thee pomodded {cdotted line) arve compared with the PDE's by the barmonions
representation (solid line), Comparisons are displaved o pairs. The solid fines in
|':||'I| | ul. I.Iilil'.- 0 ||||- BATTNE, |'i.-|:' ||-e'|11'; 'l.'i.~-||.l'r|-i|".. each ]'I]I: = :-\.|ri‘|'l-e~:| b — 2 it
ini [ :|||l| |r_‘.' —[.% in I_|:-E :|||.-||:.:| the wel i1":|| axis. i’:li‘:ll|l1'|‘l-l'.- e _|.-.i'-.'|-|| ini r||1' (NER |
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Superfluid Turbulence

J.Maurer and P.Tabeling

Europhys. Lett. 43 (1998) 29-34
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Buiaqe » Jainen

(1 DC motor
@) blades
® Pitot tube Proeasl ) = pit) + plludt) + po U u, (),

NI e RO WMWJ NWWW

4R Lo
il At

Bl &1
Fig. 1 8cm Fig. 2

Fihar)

Lol |

Fig. 1. — Sketch of the experiment; 1: DC Motor, 2: propellor, 3: probe,

Fig. 2. — Time series obtained for a frequency rotation of 6 Hz, at three different temperatures: {(a)
23 K (at a 1 bar pressure); (b} 2.08 K {c) 1.4 K. The time series have been shifted vertically so as
to make their representation clear,
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Nk
i
= 1n?
=
] 0!
[
10-!
Lk I I” lHI-I T Hllli-lIIJ
frequency {Hz) 5
Fig. 3 Fig. 4

Fig. 3. — Energy spectra obtained in the same conditions, but at different temperatures: {a) 2.3 K;
(b)) 2.08 K: (¢) 1.4 K. The spectra have been shifted vertically so as to make their representation clear.

Fig. 4. — pdf of the velocity increments obtained for time separations equal to (a) 6t = 1 ms (corre-
sponding to the smallest scale we can resolve) and (B 88 = 100 ms (which 1= representative of a large
acale), at T = 1.4 K; the ahcissa 8 is rescaled =0 a5 the variances of the distributions are equal to one.
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1=
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Fie. 5.

Exponents of the structure fumetions of tle absolute values of the loogitudingl velocity

increnwends, up to p=T, bor' T = L4 K {black disk=); the foll line represents the corrent salues foancd
in normal Hukd tarbubenes: the dasled line i= the Rolmogoroy line,
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Buiaqe » Jainen

11=0.326, ¢,=0.388, X =1.18 (q =0.543)

Re ~ 2 x 106
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Conclusion and Prospects

« We showed that A&A model explains
experimental and simulational PDFs quite
accurately both in classical and quantum
turbulences.

So accurate, we expect that we can extract
useful information for underlying dynamics of
the systems from their analyses.

Several future problems

— Proof of the assumption of the multifractal distribution
of singularities is in progress with the help of the data
from the experiment in the wind tunnel and from DNS.

— Search for a dynamical foundation of A&A model is In
progress.
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Vortex tangle in superfluid He

= Since vorticity in superfluid is quantized, investigations
of the vortex tangle in superfluid “He and 3He are
desirable in order to see what is the origin of the
singularities and why their distribution is multi-fractal.

— If the singularity originates from the core of vortex.
—> Multifractality of turbulence in normal fluid can be related
to various values of vorticities in the fluid.
—> The vortex tangle may be uni-fractal.
—> Tangle does not exhibit intermittency.

— If the singularity originates from the reconnection of vortices.
- Multifractality of turbulence in normal fluid is related to the
distribution of reconnection points in the fluid.

- The vortex tangle may be also multi-fractal.
- Tangle does exhibit intermittency.

= The analysis of simulations of vortex tangle conducted
by Tsubota (Osaka City U) is highly desirable.
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Thank you for your attention.
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