Superfluid turbulence in rotating ³He-B

Experiment:	Theory:
M. Krusius	G.E. Volovik
S. Boldarev	N.B. Kopnin
V.B. Eltsov	J. Kopu
A.P. Finne	E.V. Thuneberg (Oulu)
R. Blaauwgeers (Leiden)	
G. Eska (Bayreuth)	

L. Skrbek (Prague)

Low Temperature Laboratory Helsinki University of Technology

Simulations:

M. Tsubota (Osaka)

R. Hänninen (Osaka)

T. Araki (Osaka)

A. Mitani (Osaka)

Overview

- Introduction to the experiment
- Experimental observations on:
 - Criteria for turbulence
 - Temperature
 - Velocity
 - Effect of initial vortex configuration
 - Sequence of events:
 - 1. Injection of vortex lines, start of turbulence
 - 2. How does turbulent network advance into vortex free flow
 - 3. Relaxation

Turbulence in superfluids

Turbulence in thermal counterflow

•Supefluid turbulence ≈ tangle of vortex lines (no strict definition)

•Discovered in thermal counterflow experiments in ⁴He-II

Turbulence driven in classical way

Hydrodynamics of ³He and ⁴He

In ³He-B:

- •Normal component ~10⁴ more viscous
- •Vortex formation under control

•Mutual friction covers different ranges, α and α' are the mutual friction parameters such that $v_L = v_s + \alpha \hat{s} \times (v_n - v_s) - \alpha' \hat{s} \times [\hat{s} \times (v_n - v_s)]$

Rotating cryostat

Dilution refrigerator for precooling
Adiabatic nuclear demagnetization cooling for superfuid ³He
Creation of flow with rotation

normal component
follows the container
superfluid at rest until
vortices form

Rotating ³He-B

vortex-free rotation

intermediate

solid-body rotation

maximum energy state
normal component in corotation with the bucket
superfluid stationary in laboratory frame •Cluster of vortex lines 0<N<N_{max} minimum energy state
superfluid mimics solid-body rotation
total number of vortex lines:

$$N = \pi R^2 \frac{2\Omega}{\kappa}$$

Overview of Experiment

Experimental setup

- Two independent NMR spectrometers
- Magnetically stabilized AB phase boundary for vortex line injection

NMR on ³He-B

Spectra of turbulent events

Mechanisms for vortex injection

Shear-flow instability Kibble-Zurek of AB interface

after neutron capture

Flow through orifice

Wall defect

Shear-flow instability of the AB phase boundary

•A phase has low Ω_c and B phase high Ω_c

- •A mimics solid body rotation
- •B does not move

•Under rotation a velocity difference between the superfluids forms, "wind"

•Phase boundary becomes unstable and vortex lines are injected in the B phase

•Number of vortex lines injected N~10

• Velocity where vortex lines are injected can be tuned with magnetic field

On thursday: **Vladimir Eltsov**,

Instability of interface between two sliding superfluids and vortex formation

Vortex formation at high T

High T

Transition regime

Number of vortex lines per event as a function of T

Calibrated number vortex lines as a function of temperature after injection using K-H instability

Transition to turbulence

•Start with vortex-free rotation

•Inject vortex lines using K-H instability of AB boundary at varying rotation velocities and temperatures

•Categorize results according to the final number of vortex lines:

•A small number

• Almost equilibrium amount

Transition to turbulence

•Start with vortex-free rotation

•Inject vortex lines using K-H instability of AB boundary at varying rotation velocities and temperatures

•Categorize results according to the final number of vortex lines:

•A small number

• Almost equilibrium amount

Velocity independent?

For classical liquids, taking $\omega = \nabla \times v$

For superfluids with v_n=0, Re_s=UR/ κ >1 and $\omega_s = \langle \nabla \times v_s \rangle$ averaged over vortex lines

$$\frac{\partial \omega_s}{\partial t} = (1 - \alpha') \nabla \times [v_s \times \omega_s] + \alpha \nabla \times [\hat{\omega}_s \times (\omega_s \times v_s)]$$

inertial $\sim (1 - \alpha') U \omega / R$ viscous $\sim \alpha U \omega / R$ inertial $= \frac{1 - \alpha'}{\alpha}$

Pressure dependence

Turbulence at high flow

Turbulence at high flow

Initial configuration

AB

Neutron

Propability of turbulence after injection through AB boundary at T=0.53 T_c P_{AB} =0.96 (0.8< Ω <1.6 rad/s)

Propability of turbulence after injection through AB boundary at T=0.53 T_c P_n=0.09 (Ω =3.32 rad/s)

Evonimont

Evonimont

Structure of advancing vortex configuration

Movement of the turbulent front

•The speed at which the turbulence expands to the vortex free counterflow

 $v_z = \Omega R \alpha$

Twisting head

Time of flight and time it takes for the counter flow to disappear as a function of temperture.

Thickness assuming velocity $v_z = \alpha \Omega R$

Trailing edge τ as a function of T

Layer thickness

Trailing edge τ as a function of Ω

 Ω , rad/s

Kelvin waves

The motion of vortex lines is described by the equation $v_L = v_s + \alpha \hat{s} \times (v_n - v_s) - \alpha' \hat{s} \times [\hat{s} \times (v_n - v_s)]$

Consider a displacement from the undisturberd line

 $l(z) = \xi(z)\hat{x} + \eta(z)\hat{y} + z\hat{z}$

for wavelike solutions the dispersion relation will be

$$\omega = vk^2 - \alpha' (vk^2 - ku) + i\alpha (vk^2 - ku)$$

Modes that are excited exponentially:

$$k < k_{\max} = \frac{u}{v}$$

 $v = \frac{\kappa}{4\pi} \ln \frac{r}{a}$

Kelvin wave instability of curved vortex lines

1. Injection and expansion

2. Orientation along the flow

3. Kelvin-wave instability excited

4. Growth of Kelvin waves and reconections

Slow vortex formation from Kelvin waves Equilibrium number of vortex lines 0 bar Abs (top), mV 15 T=0.43 T P = 0 bar T = 0.45 T Number of vortex 10 lines increases $\Omega = 0.5 \text{ rad/s}$ uilibrium amount of rtex lines at Ω = 0.5 rad 5 Abs (bottom), mV $\Omega = 0$ rad/s 7 6 5 20.3 Field m² 3

Absorption, mV

 Ω rad/s 0.2 0 50 0 50 100 150 200 250 300 350 100 400 time, s Initially 0.05 rad/s Slow increase in the of vortex lines number of vortex lines

0.6

0.4

Conclusions I transition to turbulence in ³He-B

Curved vortex lines in flow unstable

Conclusions II

- Two clear regimes in ³He-B: laminar when $\alpha/(1-\alpha')>1$ and turbulent when $\alpha/(1-\alpha')<1$.
- In a long column of rotating ³He-B a turbulent layer sweeps away vortex free flow and replaces it with an array of vortex lines.
- The layer moves slower and becomes thinner with decreasing temperature.