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Outline

» Introduction: general features of granular
conductors

* Metallic conductivity

- Insulating region - hopping conductance
Hopping conductivity in superconductors




A. Gerber et al. PRL 78. 4277 (1997)
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behavior as
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FIG. 3. Resistance of sample 3 as a function of temperature
on a log-log scale, as measured at (zero) (X) and 100 kOe field
(open circles). Open circles indicate resistance measured with
a constant dc current / = 107> A. Solid squares are zero bias
resistances approximated from /-V measurements. Sample 3
room temperature resistance is 500 ().

explanation of log as
the weak localization
behavior



Granular metals: experiment.
R. W. Simon at al, PRL 36 (1987) A. Gerber et al, PRL 78, 4277 (1997)

NbN in the insulating substrate Samples (Al-Ge) with the high room temperature
5 resistivity (weak tunneling) showed an
\x\ exponential growth of resistivity as function of
al- S temperature. TK)
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FIG. 2. Resistance of sample 2 measured at zero (crosses)
and 100 kOe field (open circles) as a function of the inverse
square root of the temperature. Open circles indicate resistance
measured with a constant dc current 7 = 107® A. Solid
squares are zero bias resistances approximated from 7-V
measurements. Sample 2 room temperature resistance is
800 €.
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The problem: description of transport in granular metals

Let us recall first the approach to general properties of
homogeneously disordered metals




Conductivity of disordered metals

Thouless arguments:

rev

i L2 )

N=eVy(s) = lI=eN/r =e’v,(e.)V/z,

e’v () 2re’
G=—"1"F"= t* v, (e
. —(t*)vi(ee)




G — e2Vl (gF)
(2

Divide the sample into blocks of
size L and Introduce the energy associated
With the lifetime within the block:

h
r -zt
11
The electron diffusion over the
step L:
D~L/z,

Now remembering that

2dn

d n
D, v, (E L —
E ( )

=L"°G

I, G

j> 9L=5—L 9 =7~ v ~1/6,




Now let us make our separation of
the blocks not fictitious, but real




The key characteristic: ‘

tunneling conductance
-0
T

‘ The tunneling conductance is measured
in the units of the quantum
conductance €/ 2h

gT >>1 metallic transport properties

gT << 1 insulating behavior




Homogeneously disordered metal Granular metal
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: i Intragranule conductance =
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Granular sample
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Coulomb blockade

tunneling ! Grain charge
contact
2e
metallic
Vo lead
e g, <1
Al grain Gate voltage

»
>

EC
g+ << 1- Coulomb blockade regime - charge quantization
g, >> 1 - Charge quantization effects are exponentially small

In a granular system: metal-insulator transition at g, =1




Granular metal ‘
....... New energy scale: ‘

0000006
Te=9000
110000000

Ntragranule conductance g, =

G
e’/ h
tunneling conductance ¢; <« g,

o . mean level spacing
E. =e’/xa : charging Coulomb energy

of a single granule

g, << 1- Coulomb blockade regime - charge quantization
k d, >> 1 - Charge quantization effects are exponentially small

In a granular system: metal-insulator transition at g, =1




Granular conductors: a new class of artificial materials ‘
with tunable electronic properties controlled at the
nanoscale and composed of close-packed granules

varying in size from a few to hundred nanometers
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The granules are large
enough to possess a
distinct electronic
structure, but
sufficiently small to be
mesoscopic in nature
and exhibit effects of
guantized electronic
levels of confined
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1. Metallic regime (strong coupling between the grains g >> 1) l

Conductivity of a granular sample

D.. ~a’g,6/h=a’Tlnh=a’lr,

Interaction time: 7z ~ /T

L, = /Dyz; =aT/T Ly >ar T'>T
/ L - <a: TI'<T
Usual behavior of a disordered metal /
Incoherent electron tunneling:
Temperature dependence of conductivity

is controlled by electron tunneling between
the neighboring grains




High temperature conductivity: T >T

Conductivity: o = 0g + do do - interaction correction

oo ~—(e° I rh)In(z, I 7.), 7o ="hlE,
r,=0.;1/T: the dephasing time

Perturbation theory in 1/ g, results in the correction to conductivity

00 1 1 grEc
- n |
o) 2rdgr T Efetov, Tschersich (2003)

Can be understood as the renormalization of the tunneling conductance between the
neighboring grains

. 1 E

9d ) , valid as long as gr > 1.

Conductivity depends logarithmically on temperature for in all dimensions !




Low temperature conductivity: T <T ‘
o =0+ 00 where o = doy + dos ‘

56100mes from the large energies, & > gT5 , Where the granular
structure of the array dominates the physics. The fact that this
correction is independent of the dimensionality d means that the
tunneling of electrons is incoherent

50'2 is similar to AA correction for homogeneously disordered metals.
This is the contribution from the low energies, & < gT5 . the behavior
IS dominated by coherent electron motion on large scales.




Large energy (small scales) correction

80’1
= I V
o 27ngT mZ[da)y(a))s (w, q)
Y(w) = —a) coths%, £, = 2gr> ,(1 — cosqa)
. 2Ec(q)
Viw, q) = (40 — iw)[4eqEc(q) — iw]
O | | | - grEC i
— n
o8 2adgy  Lmax(T, gr6) _

Efetov & Tschersich 2003




Large scales correction

V(w, @)Y sin?*(qa)
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Phase Diagram of Granular Metallic Systems
T/5 4 l
universal logarithmic T = 919
corrections 8 - mean level
spacing
‘T > gT5
granular Fermi-liquid
. T < gro
( o
activated '*;"5 : K 127297 \/ gg(;, D=3
conductivity { 27 _ _ n|=S| +{ ——2-n% D=2
: 0p 27ngT ) 9T
’ ~4r\| Tor D=1
\ T gr

i >
/ . g, ~ 1R

. metal — insulator transition
insulator

Beloborodov, Lopatin and Vinokur (2004)




2. Insulating phase

_ p
Typical experimental dependence: g ~ € A4/T , DR 1/2

B. Abeles, P. Sheng, M. D. Coutts, and Y. Arie, Adv. Phys. 24, 407 (1975).

Earlier attempts to explain the conductivity temperature dependence were based on

@-0

L — localization length of the insulating layer

ASCA phenomenological model:

Thickness of the insulating layer
between two grains is t~ R
proportional to grain sizes

Coulomb energy E,. ~ e*/R

Tunneling probability P ~ e~ 2t/

2
—e”/RT=2t/L  nder constraint R ~ t

Optimization of ¢
k results in p=1/2 dependence

&
z'ﬁ




ASCA model ????7?7?7?7?? M. Pollak, C. Adkins (1992), R.Zhan

1. Capacitance disorder cannot remove

N . .
the Coulomb gap completely Activation energy

ASCA model cannot explain the

g, B.l. Shklovskii PRB (2004)

—

observed behavior at low temperature

2. Recent experiments showed the
p=1/2 law for periodic arrays.

2d array of gold particles of
size ~ 5.5 nm.

Particle sizes are controlled
within 5% accuracy.

Parthasarathy, X.-M. Lin, K. Elteto, T. F. Rosenbaum, H. M. Jaeger PRL 2004

D. Yu, C. Wang, B. L. Wehrenberg, P. Guyot-Sionnest PRL 2004 T.B. Tran, et
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ES law was also observed in the

nanocrystal arrays of semiconducting
quantum dots s

Yakimov, et al, JETP Lett. 2003 =

7 (K)
5
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Conductance (¢ /h)
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Hopping conductivity. ‘

Optimization of tunneling probability: variable range hopping

g =7 exp(-2r,/&)exp(—¢,; /T)




In the presence of Coulomb interaction the site energies are renormalized
due to interactions with the surrounding sites.

Denoting the renormalized energies as 53 , let us estimate the energy
cost for an electron transfer from a filled, i, to an empty donor, j

Al =8;—& —

00
O

Electron-
‘ hole pair




O

< [ >
o oc exp(—r/ &) exp(—e’ [ xrT)
Tunneling probability Probability to overcome

Coulomb barrier

Optimizing with
respect to r, one finds: o oC eXp[—(TES /-I-)ll 2]

eZ

K

TES




Coulomb interactions and hopping conductivity in granular arrays ‘

000
E’,&i — Ef T Uy

This looks exactly like the impurity levels in doped semiconductors:




The puzzle of tunneling





COTUNNELING

tunneling via virtual states of intermediate grains

M e

Elastic cotunneling mechanism Inelastic cotunneling mechanism

k T < JESS T > \/E§o

7'




Cotunneling allows for charge transport through several junctions at a ‘
time by cooperative electron motion.

At low temperature the sequential tunneling is exponentially suppressed by the
Coulomb blockade.

In this case, a higher-order tunneling process transferring electron charge
coherently through two junctions can take place. The excess electron charge at
the grain exists only virtually.

_ 2 (8| Hine |9) (0| Hine|2)

2
O0(E; — Ey)

(4

1. There are 2 channels which add coherently

2. The leads have macroscopic number of electrons. Therefore, with the
overwhelming probability the outgoing electron will come from a
different state than the one which the incoming electron occupies 2>
After the process an electron-hole excitation is left in the grain.

D. V. Averin and A. A. Odintsov, Phys. Lett. A 140, 251 (1989)

D. V. Averin and Y. V. Nazarov, Phys. Rev. Lett. 65, 2446 (1990).




Elastic co-tunneling mechanism

P, ~ e 25/ ot
L
- 2 . | — |
ek In(E7/cgd) & $E°
| | 90
_ ~ O
hE =+ 3>, nEy oo

Er=2 (1/Ef +1/E;)
v =2 (1/E{ + 1/Ey) T < \JES

hopping probability o e;(p[—(Qs/fel) — (e?/kTas)





Elastic co-tunneling mechanism ‘

Tunneling through a chain of grains M\
Model: Short range on-site interaction: ) { , ) ( ) (%)
N / \\ // ; // \\ // \\ //

Electron (hole) excitation energies

EE = B¢ + 4, 0 1 N N+1

N
Per = 6(En41—%0) g0 | ] P

k=1

Tunneling probability is a product

of elementary probabilities Pk = Zf;: Ep =2 (1/E,j + 1/]5’,;)_]L

gr. - conductance between k-th and k+1 - st grains

Effective localization length:

Pel ~U e—zs/ﬁel s — distance along the path

_ 2a
gel — In(E7/g)d)




Hopping conductivity in the regime of elastic cotunneling

Variable range hopping: Phonon assisted tunneling:

(Granular metals: electrons also
T 6—27“/561 —&/T contribute to the energy relaxation)

E.S.DOGS v,(c) ~ (k/e?)? |g|17] =  refi/e? ~ 1

Minimization results in the E.S. law:

N 2
o~ 6—(T0/T)1/2 \To ~ €2 |RE Eel = ln(E;L/g 5

Hopping distance r within the energy shell ¢ is given by

Nonlinear conductivity at strong electric fields

Hopping distance r within the energy shell A: Shklovskii 1973
eEr o A £ - electric field

} r~ +/e/RE E |

rArk/e? ~ 1

j N jO 6—(80/5)1/27 Eo ~ To/eﬁez




Inelastic cotunneling: single granule





Hopping conductivity: inelastic cotunneling ‘

Hopping through a chain of grains via /W \# W
. . . : 7/ - 7 - 7

inelastic cotunneling

0 1

p.— _1 gVt r4xT12N [D(N+55:)1° _ A
m

irT 7N+ |7 F reN) ¢

A=¢&v—& - difference of the energies of initial and final states




Low electric field (linear regime ) ‘
Optimization under constraint Na/%A/ez ~J 17 (N =>> 1), ‘

results in the ES law:

O e_(TO(T)/T)l/Z,

To(T) ~ €2 [k &in(T)

2qa
fzn( ) [E2/167TT29]

Crossover temperature between elastic and inelastic regimes

kfinzgel — T =./0E.




Hopping conductivity via inelastic cotunneling: strong fields

Low temperatures T-> 0O:

) — 22N |APYTt g N
Pin(T_O)_(QN—l)! E2N (%)

Hopping distance can be found as el ~ A } ) 7~
in the case of elastic cotunneling r A /%/62 ~ 1

Usingthat N ~r/a, N> 1 J ~J j € (50/5)

1/2

Eo(E) ~

Applicability:

In? (E2/e?E2%a?g)

Nonlinear regime: £ea > T

Inelastic cotunneling dominates elastic one: Eea > /I EY




Mapping onto the classical Coulomb gas

Phase action: S pg = ——Z/dT ¢; Cij o5 + Sil4], B
T (-/ o—®;
i P
Sil] — Z / o &1 ®ij (T1)—idij(72) Lo [Ld (:/E
— i T1 AT Y |
t <Z]>g‘7_oo 1o (11 — 712)2 EI &%, /)‘5"_(" s
_ : A
Mapping onto the Coulomb gas: % v v ==
P~

Expand partition 7 — Z [¢] ) / NI, —
function in S¢ : Z J

Averaging over the Coulomb action gives rise to the classical charges:

! 2 o -
Internal interaction: 1d Coulomb interaction along the “time” axis.
9 1 e—uq(m ’Tn)

o (rn = 71)2 U = In[2m(A7n)?/g]

Total classical energy (internal +Coulomb parts) : U9 = Z Ul + UEN
n=1

7'




T - > T
YT P o 9= ) (= )]
/D B |m1 — 2l + 7] — 7

Elastic cotunneling is beyond the AES approach

' Q T -
Feynman diagram
‘ HHHH X I

TN+1 TN 41
maps onto the Coulomb gas: o B 4 9
The electron world line Z‘ o 3 - 2 9
representing the probability ~  — ? T
of elastic cotunneling from 2.5 72 .
T; = —0d 7T0 — 7 7-6 Tf=

the Oth to the N+1st grain.

Inelastic cotunneling is described within the AES approximation

TN+1 TN+1

_ [ ='
T, = —0Q TQ — 7-0 ’Tf o0




General process: tunneling through the granule chain

-
\





Experiment

H. Jaeger’s group

at the University of Chicago
Transmission electron
micrographs showing the
region between the in-plane
electrodes for a) bilayers, b)
trilayers, c)tetralayers and d)
thick films. The darker
regions on top and bottom of
a-c are the electrodes. The
insets on the right sides are
diffraction patterns
computed by fast fourier
transform. The insets on the
left sides of panels a&c are
the zoomed-in images. The
scale bars correspond to
200nm (a-c) and 40nm (d, all

knsets).

&
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a) Zero-bias conductance g, versus inverse temperature T-2 for multilayer and thick
film data. Inset: For the high-temperature range, where the multilayer data in the main
panel deviate form the dotted lines, g, has been replotted as a function of T,
indicating Arrhenius behavior from 100-160K(b-e) Evolution of the | = V characteristics
with temperature for bilayers (b,c) and thick films (d,e). Panels (c) and (e) are log-log
plots of the data shown in the plots above them. The straight solid lines are guide to
the eye, indicating power law behavior. Insets to b&d: Temperature dependence of the
hopping distance N obtained from g,(T) and the I-V power-law exponents obtained
from panels c&e in therange 2V <V <7V.




Determining T,, in the Efros-Shklovski hopping formula we find (at T
= 10K), N =4 for multilayers and N= 4-5 for the thick films.

“gr |7 [(eV)? + (ksT)*]"
hje?. E¢

N=4 or j=3 implies | ~V 5. This is what was experimentally observed




Unresolved questions (or what we do not know): ‘
‘R~logT behavior

*Transport in the arrays of quantum dots (semiconductors)

*Theory of Hall effect

‘Phononless (hopping) transport




1. Periodic granular array:

Activation conductivity o ~ e~ Am(9)/T E$A

T=0: Insulator to metal transition occurs at

1

ge = — In(Ee/go)

Tz ~ gc

2. Arrays with electrostatic disorder:

Linear regime:
2a

In(Enx/gd)’ T <\/E§s elastic

_ 1/2 ~
g~ e (TO/T) ) ‘T0N€2/[{,€, gr\./

2a _ _
In[ £2/167T3g]’ T>/E§s inelastic

Nonlinear regime:

j ~ j() 6_(80/8)1/2’

= IHQ[EW/(SQ], fea< VOE? elastic
|

. In*[E?/e*E2%a2g], Eea > /O0E? inelastic

R a?




Hopping conductivity in granular superconductors ‘

Weak coupling regime g;<<1

Simplest Model: ) )
Coulomb energy + H=4 Z i Bigj + Z Jij cos(¢i — ¢5)
Josephson couplings ©J ]

¢ — Cooper pair phase n = —id/0¢ - Cooper pair number operator

Anderson-Abeles criterion for the global superconductivity development |J > E.

Applicable at g<<1 - as long as the charge renormalization effects may be neglected.

We assume g<<1 gA<<Ec ==p No global coherence

In the presence of electrostatic disorder the transport can be mediated by Cooper pair hopping

Questions:

1. Electron hopping transport in the presence of the superconducting gap - ?
2. Multiple cotunneling in the presence of the gap - ?

I 3. Conductivity temperature dependence - ?

7'




Density of states: Single grain model

Energy of a single superconducting grain.

n - number of excessive electrons,

E = n2Ec —Vn+ P(n + p) A counted with the respect to
/ \ \ N, — the total charge of the neutral state
Charging energy Random potential Parity term.

Total number of electrons N=N, + n.

Parity effect. A state with odd number of electrons has an extra energy A.

Matveev, Averin Nazarov 1992
0 —evenn

Parity function: P(n) — { 1 —odd n

p=1,2 — the total charge N of the neutral state can be even or odd.

The energy E is at minimum with respect to electron number n for a given potential V.

Excitation energies to add or remove an electron are all positive for any V!

- - - - - -
Same for the pair creation and annihilation processes.




Single grain model: Electron occupation number

Electron excitation energy:

£+ = EMn+1)+E(n)
= (£2n+1)E. FV + Acosw(n+ p)

Occupation number n jumps
n—ntxtlatfyL =0

Pair excitation energy:

E(n+2) — E(n)
A(En+ 1)E, F2V

Eat

Occupation number n jumps
n—nx2at =0

Depending on the mutual relation of E and A one finds qualitatively different dependences n(V):

1. Charging energy dominates E>A.
Modified Coulomb staircase:
Occupation number changes by one

n—>n+1 at
Vo=02n+1)E. + Acosm(n+p)

Pair excitations are gapped for all V!

Eog > Q(Ec — A)

2. Parity term dominates A>E-

Usual staircase but for Cooper pairs:

Occupation number changes by two

n>n+2 at V,, = E.(4n + 2)

Electron excitations are gapped for all V!

5:|3>A—Ec




Electron number and excitation energies as functions of V, EC>_

Electron occupation number: n(V) Single - and two particle
tn excitation energies
" 3E+4  -Eq4 E.+4  3E-A
1
-3E. -2E, -E, E. 2E,
-1
-2
3E+4 -Es4 E+a  3E-4 A VN NEAN N | 74
-3E. -2E. -E, 0 E. 2E. 3E.
solid lines — creation

A




Electron number and excitation energies as functions of V, A‘

Electron occupation number: n(V) Single ) apd two pa.rticle
excitation energies
4 n J/
/
4 /
/
/
/
/
2 /
/
2F B
- /

c V //

| : : i I I > / //

-6E -4E 2E AE 6E !
c c Cc c C II // A'EC
/
-2 /I/
e
i
-4 I 1 1 V
-2E, 0 2E,

solid lines — creation




Density of states

Long range Coulomb interaction

chzijniEgjnj—V}ni—kAP(ni-sz‘) ECNGZ/Z/%T r — 00

Main conclusions of the single grain model stay the same!

1. E¢> A: Gapless electrons. 2. Ec <A: Gapless pairs.

Pair gap: 2(Ec- 2) Electron gap: A-E¢

DOS: Efros-Shklovskii approach:

Energy to replace electron form i to | Energy to replace a pair fromitoj

E9, =& +& —2E7 >0 E1. =€ +E&, —8ET >0
~ / 2\d _.d—1 ~ —

vi(e) = aq1 (k/e”)% va(e) = ags (R/(2e)?) %!

kThe difference is due to the Cooper pair doubled charge only, therefore |aq1 = Q2.




Multiple cotunneling in granular superconductors. Hopping Conduc_

Electron hopping regime: Ec >>A.

Elastic regime Inelastic regime
M . N :
\\\ //I' l\\ II' l\\ /,' ‘\\ = /I' ‘ N 2 4 ' ‘\ 3 /' ‘: ’I :' l: 7'
N 7 A ~ G ~ N / N 7

1. T>>A: ES law with essentially unaffected

Hopping conductivity localization length:

o~ e T/ Ty~ e? /Rl

_ 2a
Ein(T') = In[ E2 /167123 ]

The presence of the gap results in a small
correction to the localization length:

2. T<< A: Strong suppression of the
94 inelastic cotunneling !

Sel = (B 7735)

o ~ exp [ — N(In(E?/4gTA) + QA/T)]

‘E(A) = E(0) + cA N is the typical tunneling order:

l N = \/be2/16akA ~ \/E./A

ticeable nei ative mai neto-resistance.
,& 55




Transport phase diagram in the magnetic field in the EH regirr‘

The gap &“€ah bejtuned by the magnetic field

ES. Inelastic cotunneling

Moctivation,
Inelastic cotunneling

ES. Elastic
cotunneling

Ty T 7S o g T

\Tl ~ (.1 /EC(S - Crossover between elastic and inelastic regimes at A=0

| T ~ §elA/a - Crossover between the elastic and inelastic activation behavior at H=0

15 ~ finA / a -Crossover between ES and activation inelastic regimes

A




Cooper pair hopping (CPH) regime

Hopping of Cooper pairs can be described in terms of the effective Hamiltonian

_4ZnZE”n]—QZmV—I— ZJwe Py

<13>

@ - Cooper pair phase n = —i0/0p - Cooper pair number operator

Jii = gi;mA/2 - Josephson couplings

Tunneling amplitude via perturbation theory in J:

N
A~ H Jiit1/E5, £ =2/[1/&5, +1/&_]

1=1

Es,, E4_ - Cooper pair creation and annihilation energies

Tunneling probability P = A*A ~ e 2r/¢cPn ¢ B a
CPH T In(8E/mgA)

Conductivity:

Positive magnetoresistance !

Ty ~ e*/kécru




Experimental data

Granular aluminum samples.

A. Gerber, A. Milner, G. Deutscher, M. Karpovsky, A. Gladkikh PRL 1997.

Weak coupling insulating regime. K
50 3.0 20 15 liO 08 0.6 04 0.31

Grain size ~ 120A ' ' a—

Ec>>A - Electron hopping !

Theory predicts the giant negative
magneto-resistance at T< A.

Explanation: suppression of the
inelastic cotunneling by the
superconducting gap.

0.4 0.6 0.8 1.0 1.2 14 16 1.8
yTY2 (K12

FIG. 1. Resistance of sample 1 measured at zero (triangles)
and 100 kOe field (circles) as a function of the inverse square
root of the temperature. Sample 1 room temperature resistance
is2 X 10° Q.




Hopping conductivity in superconductors: Results‘
Hopping law

T

Ec > A. Electron hopping.

Ec < A. Cooper pair hopping.

A

T ES law. 1
Inelastic regime.

Ty~ EnAja |------------- 2. Positive magnetoresiatnce.

. ES law for Cooper pair transport.

Activation law.

: ) 3. Possible scenario at g ~ 1:
Inelastic regime.

Renormalization of the charging energy
Ty~ EqA/ja |========----- due to tunneling coupling.

R1 Cooper pair hopping

/

ES law; elastic
Ty ~0.1vE0 regime.

Electron hopping

k Negative magnetoresistance

v




	Large energy (small scales) correction
	Large scales correction

