The hydraulic jump in liquid helium

Claude Guthman

Etienne Rolley
LPS - Ecole Normale Supérieure

Michael Pettersen

Washington and Jefferson College

The hydraulic jump

- Easy to observe

- A theoretical challenge
- First step [Rayleigh 1914] :

$\left.\begin{array}{l}\text { the jump is a shock } \\ \text { inviscid potential flow }\end{array}\right\} \Rightarrow \frac{R_{j} d^{2} g a^{2}}{Q^{2}}+\frac{a^{2}}{2 \pi^{2} R_{j} d}=\frac{1}{\pi^{2}}$
neglecting outside momentum

$$
\Rightarrow \quad R_{j} \propto \frac{Q^{2}}{d^{2} g a^{2}}
$$

- Second step :

the jump is still a shock
the velocity profile in the thin film is nearly parabolic
[Watson 1964]
with $\operatorname{Re} \equiv \mathrm{Q} /$ va
$\Rightarrow \quad \frac{R_{j} d^{2} g a^{2}}{Q^{2}}+\frac{a^{2}}{2 \pi^{2} R_{j} d}=0.01676\left\{\left(R_{j} / a\right)^{3} \operatorname{Re}^{-1}+0.1826\right\}^{-1}$
- Going further :
* Experiments : recirculating region at the jump
\rightarrow need for a more accurate description of the flow difficult since i) Re is not small
ii) free boundary new approximation schemes [Bohr et al. 2000]
* Effect of the surface tension?

Changes the momentum balance at the jump

$$
\frac{R_{j} d^{2} g a^{2}}{Q^{2}}\left(1+\frac{2}{\mathrm{Bo}}\right)+\frac{a^{2}}{2 \pi^{2} R_{j} d}=0.01676\left\{\left(R_{j} / a\right)^{3} \mathrm{Re}^{-1}+0.1826\right\}^{-1}
$$

[Bush et al. 2003]

$$
\mathrm{Bo} \equiv \mathrm{R}_{\mathrm{j}} \Delta \mathrm{~h} / \mathrm{L}_{\mathrm{c}}{ }^{2}
$$

- Using liquid helium ?

Extension of experiments with viscous fluids

- easy to reach high Re
- effect of surface tension

What happens at the lambda point?

- is it possible to reach a true inertial regime?
- white hole analog?
the flow velocity in the interior region exceeds the speed of surface waves
[Volovik 2005]

Experimental Setup

- Optical He-4 cryostat (T > 1.5K)
- Side view :

jet diameter : 0.2 mm

- Top view :

- He-4 flow
- gas flow measured at room temperature
- condensation + thermalization in the He bath

$$
\mathrm{Q}=2-50 \mathrm{~mm}^{3} / \mathrm{s}
$$

$\rightarrow \mathrm{R}_{\mathrm{j}}=0.4-4 \mathrm{~mm}$

- Thickness of the liquid flow

Normal liquid He-4

- Jump radius R_{j} and outside depth d

temperature : $4.25-2.4 \mathrm{~K}$ inside depth $\sim 10 \mu \mathrm{~m}$
- Comparison with «shock » models

- : 4.25 K
- : 3 K
© : 2.45 K
- Agreement between model and experiment
- Better agreement with the surface tension correction, but this correction is too large
- Comparison with «shock » models

The surface tension correction is calculated assuming

Going through the lambda point

No (large) change in the jump radius R_{j} at T_{λ} ?

Inner region :
thickness $e \sim 10 \mu \mathrm{~m}$
$Q>10 \mathrm{~mm}^{3} / \mathrm{s}$

$$
\} \Rightarrow \begin{gathered}
u>u_{\mathrm{c}} \sim 50 \mathrm{~mm} / \mathrm{s} \\
\text { for } \mathrm{r}<3 \mathrm{~mm}
\end{gathered}
$$

\rightarrow superfluid similar to a normal fluid with $\eta \approx \eta_{\mathrm{n}}$

Good data collapse for $\mathrm{T}=4.25-1.5 \mathrm{~K}$

Some more data at $T=1.5 \mathrm{~K}$

When the outer level goes up...

...the jump shrinks.
$\rightarrow R_{\mathrm{j}}(d)$ at constant flow rate
Agreement with "shock" models

$$
+ \text { viscous flow with } \eta=\eta_{n}
$$

Capillary waves in the inner region

- Stationary pattern in the lab frame

Wave velocity opposite to the fluid velocity
Oscillation - originates at the jump and decreases as it propagates

- due to an instability of the flow

The local wavelength $\lambda(r)$ depends on the local $\left\{\begin{array}{l}\text { fluid velocity } \\ \text { fluid depth }\end{array}\right.$

- Analysis of the wavelength
$-\lambda \ll \mathrm{r} \rightarrow$ 1D wave
$-\lambda \ll \mathrm{H} \rightarrow$ surface waves in shallow "water" $\quad \omega^{2}=\left(g k+(\alpha / \rho) k^{3}\right)$ th $k H$

Agreement with

- Watson's calculation for a viscous liquid
- direct measurement ($\sim 10 \mu \mathrm{~m}$)
- Damping

The damping appears much weaker below T_{λ} :

\rightarrow the imaginary part κ of the wave vector k decreases by the same amount as the viscosity

Seems consistent with the idea that superfluid = viscous fluid

- Calculation (estimation) of the damping

Velocity profile : close to a parabolic profile
Real flow inside the jump
\Rightarrow simpler 1D geometry : flow down a tilted plane parabolic background flow

+ perturbation $\delta \mathrm{h} \mathrm{e}^{\mathrm{i}(\mathrm{kx}-\omega t)}$

Large literature on the flow stability...
...here, we look for
a particular solution for k
corresponding to $\omega=0$

Real part of the wave vector \rightarrow

- Calculation (estimation) of the damping
- Damping for the normal fluid Imaginary part of the wave vector $\left.\rightarrow \kappa=10.6 \mathrm{~mm}^{-1}\right\}$

$$
\text { at } \mathrm{T}=2.5 \mathrm{~K}
$$

- Temperature dependence

Too small

\rightarrow something special happens below T_{λ}

Conclusion

- Above T_{λ} : good agreement with the usual (viscous) model
- The main features of the jump do not change at T_{λ} : the value of R_{i} and the liquid depth inside the jump are consistent with the hypothesis that the fluid behaves as a viscous fluid with viscosity η_{n}
- However, the damping of capillary waves inside the jump is not consistent with this hypothesis.
- Is it possible to reach a true superfluid regime ?

