Quantum Phenomena at Low Temperatures Lammi 21-26/4/2006

On the supersolid state of ⁴He

Sede centrale: facciata lungo largo Richini

Sede centrale: cortile del Richini

Luciano Reatto

Dipartimento di Fisica, Università degli Studi di Milano

Coworkers

Davide E. Galli

Maurizio Rossi (PhD student) Ettore Vitali (PhD student)

Outline

- Introduction: supersolid, experimental results and some basic questions for many body theory
- Some special properties of solid ⁴He
 - Zero point motion
 - Vacancy-intestitial pairs
 - Vacancy waves
- Theoretical tools
 - Variational Shadow Wave Function (SWF)
 - "exact" Shadow Path Integral Ground State (SPIGS)
- Ground state: commensurate or incommensurate?
 - What is known
- One-body density matrix:
 - Study of ODLRO in a commensurate crystal
 - Variational result (SWF)
 - Exact result (SPIGS)
 - Study of ODLRO in a crystal with vacancies (incommensurate crystal)
 - Variational result (SWF)
 - Exact result (SPIGS)
- Conclusions

SUPERSOLID STATE

A quantum solid (⁴He) with some sort of superfluid properties like non classical moment of inertia, BEC

Theoretical works ante Kim-Chan experiments (2004)

A. Possible presence of vacancies in the ground state (Andreev and Lifshitz 1969)

- B. Model wave functions exist with crystalline order, a finite concentration of vacancies and a finite BEC (Chester 1970, stimulated by proof (Reatto 1969) that a Jastrow wf has BEC)
- C. Non classical rotation of a quantum solid; rigidity of wave function: ρ_s/ρ >0 if local density $\rho(r)$ >0 (Leggett 1970)
- D. ...work by Saslow, Guyer,...

••••

Z. Microscopic computation of the condensate induced by vacancies in solid ⁴He from variational theory (Galli-Reatto 2001)

Supersolid State

• If Off Diagonal Long Range Order (ODLRO) is present we expect some superfluid phenomena

- No theoretical motivation for why this could not happen (therefore it must happen somewhere)
- There is now solid evidence that Bose Hubbard model on a lattice can show LRO+ODLRO, in ⁴He however the lattice is self-built by the atoms

Experiments (1)

• Experimental search of the supersolid state in the seventies and eighties has been unsuccessful

BREAKTHROUGH

Kim and Chan find non

classical rotational inertia in

- ⁴He in vycor (Nature, Jan. 2004)
- ⁴He in porous gold (JLTP, Febr. 2005)
- ⁴He bulk (Science, Sept. 2004)

Experiments (2)

 Superfluidity of bulk crystalline ⁴He is the correct explanation?

Beamish and coworkers experiment in vycor (PRL 2005 and 2006) rules out some possible alternative explanations, on the other hand they see no pressure-induced flow in the pores

⁴He solid diluted with a low concentration of ³He

Latest results from PSU: with X₃=1 ppb ρ_s =0.025%, T_c=80 mK (Baltimore 3/2006)

Supersolid behaviour in torsional oscillator experiments, works in progress reported at "The supersolid state of matter"

Santa Barbara (February 2006)

- Rittner-Reppy (Cornell)
 - They find NCRI, signal goes away after suitable annealing (cross section oscillator is
- Shirahama and collaborators (Keio Un.)
 - They find NCRI, ρ_{s} is one order of magnitude small compared to the PSU results
- Penzyev and Kubota (ISSP, Un. Tokyo)

- They find NCRI, results comparable with those of PSU

Summary of results from microscopic theories

Finite temperature ("exact" results PIMC) A. Bulk commensurate solid Superfluid fraction ρ**ς=0** at T≥0.5 K (Ceperley, Bernu PRL 2004) 1) 2) Condensate fraction n_o=0 at T≥0.2 K (Clark, Ceperley PRL 2006; Boninsegni et al. PRL 2006) <u>Solid 4He in "vycor"</u> (split pore geometry) $\rho_{s}\neq 0$ at T ≈ 0.15 K due to liquid like monolayer between solid and immobile adsorbed layer (Khairallah, Ceperley PRL 2005) Zero temperature (variational and "exact" results) Β. Bulk commensurate solid Condensate fraction n_>0 variational theory (Galli, Rossi, Reatto PRB 2005) Condensate fraction n_0 might be finite exact theory (work in progress) Incommensurate solid (solid with vacancies) Condensate fraction variational theory (Galli, Reatto JLTP 2001) n_o>0 Condensate fraction $n_0>0$ exact theory (Galli, Reatto PRL 2006) <u>Solid 4He in "vycor"</u> (cylindrical channel, Ø=26Å) Condensate fraction n₀>0 variational theory (Rossi, Galli, Reatto PRB 2005) The ground state of bulk solid ⁴He is commensurate or incommensurate? С. Direct masurements Experiment: cannot exclude vacancies below a concentration $X_{v} \approx 0.1\%$ at low T

- Theory: variational theory: $X_v > 0$ but X_v not computed yet; exact theory: not know

Solid ⁴He: some important aspects

- Bragg scattering → translational broken symmetry (LRO)
- Very large Lindeman ratio at low density:

An atom has a 40% probability to be closer to the border of the Wigner Seitz cell than to the center of the cell

- Solid helium is a very soft solid
- One can grow almost perfect crystals (but it is not easy): large single crystal with very few dislocations

Vacancy-interstitial pairs (VIPs)

Evidence from theory

- Even in a commensurate state (n° lattice sites = n° atoms) one finds the presence of vacancy-interstitial pairs (VIPs)
- These VIPs are not excitations but simply fluctuations of the lattice; they are part of the large zero-point in the ground state of the solid
- The term "pairs" is used to underline the origin of these zero-point processes.
- Are VIPs unbound?

Yes for SWF variational theory Not clear yet for exact ground state

 VIP frequency: ≈1 every 2-3x10³ MC steps with 180 ⁴He atoms ⇒ X_{vip}≈2x10⁻⁶

hcp basal plane ρ =0.029 Å⁻³

vacancy excitation spectrum (SWF result)

Galli, Reatto, Phys.Rev.Lett. 90, 2003; Galli, Reatto, J.Low Temp.Phys. 134, 2004

period of high

crystal

frequency phonon in the

- Vacancy very mobile, in agreement with recent experiments Andreeva et al., J.Low Temp.Phys. 110, 1998
- Band width decreases at larger density

Variational theory of a quantum solid

- In the framework of variational theory of quantum solids the wave functions fall in two categories:
- 1. Ψ has explicit translational broken symmetry, for instance by localizing the atoms around the assumed lattice sites $\{\vec{R}_i\}$

$$\Psi(\vec{r}_1,..,\vec{r}_N) = \Psi_J \times \prod_i^N e^{-C \left|\vec{r}_i - \vec{R}_i\right|^2}$$
(Jastrow+Nosanow)
 \rightarrow Sum over permutation to get Bose Symmetry

2. translational invariant Ψ , first example:

$$\Psi_{J}(\vec{r}_{1},..,\vec{r}_{N}) = \prod_{i < j}^{N} f\left(\left|\vec{r}_{i} - \vec{r}_{j}\right|\right) \quad \text{(Jastrow)}$$

Second example: Shadow Wave Function

Our variational tool: Shadow Wave Function

Evolution of Vitiello, Runge and Kalos, Phys. Rev. Lett. 60, 1970 ('88)

 Ψ Includes many particle correlations via coupling to subsidiary variables

$$\Psi(R) = \phi_r(R) \times \int dS \ K(R,S) \times \phi_s(S)$$

Direct explicit Jastrow correlations Indirect coupling via subsidiary (shadow) variables

Particles coordinates: $R = \{\vec{r}_1, ..., \vec{r}_N\}$

Shadow variables: $S = \left\{ \vec{s}_1, ..., \vec{s}_N \right\}$

Jastrow terms: $\phi_r(R), \phi_s(S)$ $K(R,S) = \prod_i^N e^{-C|\vec{r_i} - \vec{s_i}|^2}$

Shadow variables

Shadow variables are strongly correlated
 Spontaneous translational broken symmetry for ρ>ρ_o
 Crystalline order of ⁴He atoms induced by many-body correlations introduced by the shadow variables

SWF simulation of hcp solid ⁴He: projection of the coordinates of the real and shadow particles in a basal plane for 100 MC steps

- Shadow positions
- ⁴He atom positions

SWF: the solid phase

- Presently (a fully optimized) SWF provides the most accurate variational description of ⁴He in the liquid and in the solid phase
 Moroni, Galli, Fantoni, Reatto, Phys.Rev.B58, 1998
- Accurate freezing and melting densities
- Solid phase: spontaneously broken translational symmetry
- Lindeman ratio $\sqrt{|r-R|^2}/a = 0.252$ (exper. 0.26)

Local density hcp lattice ρ =0.029 Å⁻³

Projector QMC methods: Path Integral Ground State Sarsa, Schmidt, Magro, J.Chem.Phys., 113, 2001

• Projector QMC: Ground state as imaginary time evolution of a trial variational state

$$\Psi_0(R) = \lim_{\tau \to \infty} \int dR' \left\langle R \middle| e^{-\tau \hat{H}} \middle| R' \right\rangle \Psi_T(R') \qquad R = \left\{ \vec{r}_1, \vec{r}_2, \cdots, \vec{r}_N \right\}$$

• Path Integral representation of the propagator:

$$\Psi_0(R) = \lim_{\tau \to \infty} \int dR_1 \cdots dR_M \left\langle R \left| e^{-\frac{\tau}{M}\hat{H}} \right| R_1 \right\rangle \times \cdots \times \left\langle R_{M-1} \left| e^{-\frac{\tau}{M}\hat{H}} \right| R_M \right\rangle \Psi_T(R_M)$$

• Approximation: finite imaginary time propagation

$$\Psi_{0}(R) \cong \int dR_{1} \cdots dR_{N} \left\langle R \left| e^{-\frac{\tau}{M}\hat{H}} \right| R_{1} \right\rangle \times \cdots \times \left\langle R_{M-1} \left| e^{-\frac{\tau}{M}\hat{H}} \right| R_{M} \right\rangle \Psi_{T}(R_{N})$$

Accurate approximation for the short-time propagator, es: Pair-Product (Ceperely, Rev.Mod.Phys. 67, 1995)

• With SPIGS: as Ψ_{T} we use the SWF

Is the ground state of bulk solid ⁴He commensurate or incommensurate?

- Early theoretical works were based on the assumption of zero-point vacancies (Andreev and Lifshitz, JETP <u>93</u> 1969; Chester, Phys.Rev.A <u>2</u> 1970)
- If ground state vacancies are present this will have significant effects on low T behavior of solid ⁴He

(phenomenological theory by P.W. Anderson, W.F. Brinkman, D.A. Huse, Science 310 2005)

• Naive answer: it is commensurate because computation of $\langle \Psi_0 | \hat{H} | \Psi_0 \rangle$ for the perfect solid with one vacancy allowed to estimate a vacancy formation energy $\Delta e_v > 0$

Vacancy formation energy Δe_v at melting density (fixed density)

Method	lattice	Δe_v
SPIGS SWF	hcp	15.7±0.8 15.6±0.6

Galli, Reatto J.Low Temp.Phys. <u>134</u> 2004.

• This argument is not conclusive: one has deduced Δe_v from computation of the ground state energy of two different systems, Δe_v is a derived quantity as an estimate of the extra energy due to the presence of one additional vacancy

Example of computation of Δe_v

Commensurate or incommensurate?

Commensuration effects in small system makes difficult to answer this question, one has to analyze an extended system of \mathcal{N} particles in a volume V so large that boundary conditions have a negligible role

 $\Rightarrow \text{ Similar to what one has to do to treat vacancies in a classical system}$ Consider translational invariant wave functions
I Example: Jastrow wave function $\Psi_J(\vec{r}_1,..,\vec{r}_{\mathcal{N}}) = \prod_{i < j}^{\mathcal{N}} e^{-\frac{1}{2}u(r_{ij})} / Q_{\mathcal{N}}^{1/2}$ (old argument by Chester)
Normalization constant: $Q_{\mathcal{N}} = \int d\vec{r}_1 .. d\vec{r}_{\mathcal{N}} \prod_{i < j}^{\mathcal{N}} e^{-u(r_{ij})}$

Ground state averages with $|\Psi_J|^2 \rightarrow N$ classical particles at $\beta^*=1/kT^*$ and with pair potential v*(r) such that $\beta^*v^*(r)=u(r)$

Normalization constant $Q_N \rightarrow$ canonical configurational partition function of this classical system

From analysis of $Q_{\mathcal{N}}$ of a classical solid \rightarrow the lowest free energy corresponds to a state with a finite concentration $\overline{X}_{\nu} = (\mathcal{M} - \mathcal{N})/\mathcal{N}$ of vacancies Ψ_{J} of an extended system has a finite concentration of vacancies \mathcal{M} : n° lattice sites \mathcal{N} : n° particles

Commensurate or incommensurate?

Exact ground state averages as given by SPIGS

- Equivalence with a classical system of N open polymers of M beads
- Also here there is a finite concentration $\overline{X}_{\nu}(M)$ of vacancies

Therefore SPIGS with a finite number M of projections has a finite $\overline{X}_{\nu}(M)$, however $\overline{X}_{\nu}(M)$ might vanish in the limit $M \rightarrow \infty$

• At present no computation of $\overline{X}_{\nu}(M)$ has been performed <u>Conclusion</u>: the nature commensurate or incommensurate of bulk solid 4He at T=0 K is undecided from microscopic theory

ODLRO – Commensurate state

SWF results: ODLRO in commensurate solid ⁴He

Galli, Rossi, Reatto, Phys.Rev. B 71, 2005

- ODLRO is present: n₀≈5±2×10⁻⁶ at melting and for a finite range of densities (up to 54 bars)
- No finite-size effects
- Key process is the presence of VIPs

ODLRO: microscopic origin

$$\rho_{1}(\vec{r},\vec{r}') = \left\langle 0 | \hat{\Psi}^{+}(\vec{r}) \hat{\Psi}(\vec{r}') | 0 \right\rangle$$

Snapshot of SWF trimers in a basal plane

ODLRO – Commensurate state

Commensurate crystal SWF results: ODLRO in a basal plane

- We have computed the one-body density matrix in a basal plane of an hcp solid and along a single axis (n.n. direction)
- ODLRO is present and it is anisotropic only in the middle range 3-14 Å
- Good agreement with the result obtained by sampling in one dimension (n.n. direction)

ODLRO – Commensurate state

One-body density matrix: SPIGS results

- Calculations of the one-body density matrix in fcc solid ⁴He at ρ =0.031 Å⁻³ (this corresponds to pressure p≈54 bars) with SPIGS
- Pair-product approximation: $\delta \tau = (40 \text{ K})^{-1}$; $\tau = 0.075 \text{ K}^{-1}$ (P=2M+1=7; M=3)
- Oscillations in the tail region are still present (VIPs), the SPIGS result up to 10 Å is above the SWF result
- The system is too small to conclude that ODLRO is present, computation for larger systems is under way

ODLRO – Incommensurate state

Incommensurate solid, SWF results:

(Galli, Reatto, J. Low. Temp. Phys. <u>124</u>, 2001)

- ODLRO is present in the low density incommensurate solid
- $\rho_1(\vec{r}-\vec{r}')$ is Gaussian like only for small distances
- Position of maxima of ρ_1 indicate that ODLRO is vacancy induced in this case

IdODLRO:
microscopic origin $\rho_1(\vec{r},\vec{r}') = \langle 0 | \hat{\Psi}^+(\vec{r}) \hat{\Psi}(\vec{r}') | 0 \rangle$ \circ \circ </td

Condensate fraction proportional to the concentration of vacancies

| n₀ = 0.22 X_v at melting density Similar values in fcc and in hcp

15

ODLRO – Incommensurate state

Incommensurate solid, SPIGS results: ODLRO in solid ⁴He with vacancies

(Galli, Reatto, PRL 2006)

- Sampling along nearest neighbors direction
- fcc ρ=0.031 Å⁻³
 P=54 bars
 pair-product
 approximation
 δτ=(40 K)⁻¹
- ODLRO is still present with SPIGS

ODLRO – Incommensurate state

Condensate fraction proportional to the concentration X_v of vacancies n₀ = 0.23X_v at 54 bars

Vacancies are very efficient in inducing BEC: vacancies as ideal B. gas with effective mass m*=0.35m_{4He} ↓ T_{BEC}≈10.8X_v^{2/3}

X_{v}	T_{BEC}
2.3x10 ⁻³	200 mK
2.9x10 ⁻⁴	50 mK
2.6x10 ⁻⁵	10 mK
0.8x10 ⁻⁶	1 mK

Conclusions

I have discussed some aspects related to the supersolid state of ⁴He at T=O K

- A. Is the ground state of bulk solid ⁴He commensurate or incommensurate? This is still an open question:
 - The best variational wave function (SWF) describe an incommensurate state but the equilibrium concentration X_v of ground state vacancies has not yet been computed
 - For the exact ground state we do not know if X_v is finite
- B. ODLRO-BEC in the commensurate solid
 - Variational theory (SWF) gives BEC with n₀≈0.01% at 54 bars
 - Exact ground state path integral (SPIGS) result is compatible with similar value of n_o but system size at the moment is too small to be conclusive
- C. ODLRO-BEC in the incommensurate solid
 - Both variational (SWF) and exact (SPIGS) computations give a finite BEC, n_o scales with concentration X_v of vacancies \rightarrow at 54 bars the condensate is $\approx 0.23X_v$
- Vacancies (either equilibrium or non equilibrium) are very efficient to give BEC: estimated $T_{BEC} = 200$ mK for $X_v = 2x10^{-3}$, $T_{BEC} = 10$ mK for $X_v = 3x10^{-5}$

Under investigation :

- SPIGS computation for larger system to assess presence of ODLRO-BEC in the commensurate solid
- Determination of the equilibrium concentration of vacancies in the ground state
- Effects on BEC and on vacancies of ³He impurities