Full Counting Statistics in Superconducting Heterostructures

> Wolfgang Belzig Universität Konstanz

Circuit Theory of Crossed Andreev Reflection

Wolfgang Belzig

Universität Konstanz

Jan Petter Morten and Arne Brataas

Norwegian University of Technology, Trondheim

Quantum Phenomena At Low Temperatures, Lammi (2006)

Content

- Nonlocality of Cooperpairs
- Crossed Andreev (CA) reflection (vs. Elastic Cotunneling (EC))
- Experimental Signatures
- Quasiclassical Approach (Circuit Theory)
- Results
- Conclusion/Outlook

Nonlocality of Cooperpairs

Size of a Cooperpair: $\xi_0 = \frac{\hbar v_F}{2\Delta}$ (clean limit) $\xi = \sqrt{\frac{\hbar D}{2\Delta}}$ (dirty limit)

Spin-entangled electrons $\frac{1}{\sqrt{2}} \left(|\uparrow\rangle|\downarrow\rangle - |\downarrow\rangle|\uparrow\rangle \right)$

Question: Detection by nonlocal transport setup?

Spatial correlations [Byers, Flatte, PRL 95]

0.3

- fast oscillations on scale $1/k_F$
- ${}$ slow decay of envelope on scale $\xi_0=\hbar\Delta/v_F$
- double STM -> difficult to realize

Separated normal contacts [Falci, Feinberg, Hekking, EPL 01] e.g. lithographically defined

conductance matrix:

$$\begin{pmatrix} I_A \\ I_B \end{pmatrix} = \begin{pmatrix} G_{DA}^A + G_{CA} + G_{EC} & G_{CA} - G_{EC} \\ G_{CA} - G_{EC} & G_{DA}^B + G_{CA} + G_{EC} \end{pmatrix} \begin{pmatrix} V_A \\ V_B \end{pmatrix}$$

Tunneling Hamiltonian approach: limited to lowest order perturbation theory

$$\left(\begin{array}{c}G_{\rm EC}^{\sigma}\\G_{\rm CA}^{\sigma}\end{array}\right) \approx \frac{2\pi^3 e^2}{\hbar} |T_{\rm A}d_{\rm A}|^2 \, |T_{\rm B}d_{\rm B}|^2 N_S^2(0) N_{\rm A}^{\sigma}(0) \frac{e^{-2R/\pi\xi}}{(k_{\rm S}R)^2} \left(\begin{array}{c}N_{\rm B}^{\sigma}(0)\cos^2(k_{\rm S}R)\\N_{\rm B}^{-\sigma}(0)\sin^2(k_{\rm S}R)\end{array}\right)$$

-> $G_{CA} = G_{EC}$ in many channel limit

Spin-polarized contacts [Falci, Feinberg, Hekking, EPL 01]

$$\left(egin{array}{c} G_{EC} \ G_{CA} \end{array}
ight)\sim \left(egin{array}{c} N^A_\uparrow N^B_\uparrow + N^A_\downarrow N^B_\downarrow \ N^A_\uparrow N^B_\downarrow + N^A_\downarrow N^B_\uparrow \end{array}
ight)\sim \left(egin{array}{c} 1+2P^AP^B \ 1-2P^AP^B \ 1-2P^AP^B \end{array}
ight)$$

-> depends on magnetic configuration (parallel vs. antiparallel)

Diffusion inside S [Feinberg PRB 03; Chtchelkatchev JETPL 03] mean free path *l*; coherence length $\xi = \sqrt{\xi_0 l/3}$

Effective renormalization

 $G^{dirty}_{EC/CA} = G^{clean}_{EC/CA} \frac{R}{l} e^{-R/\xi}$

-> nonlocal conductance enhanced-> cancellation remains

Experiments I

Ferromagnetic contacts [Beckmann, Weber, Löhneysen, PRL 04]

- nonlocal (spin-)signal observed
- sign corresponds to (dominant) elastic cotunneling

Energy resolved detection scheme (Russo, Kroug, Klapwijk, Morpurgo PRL 2005)

Energy dependence on scale of Thouless energy
Magnitude, sign, and voltage dependence not explained

Question: Can this effect be described by the quasiclassical theory

Question Can this effect be described by the quasiclassical theory

Answer: Of course! General theory (Gorkov equation) for matrix GF $\check{G}(x,x')$

$$egin{pmatrix} -i\partial_t-h(x)&\Delta(x)\ -\Delta^*(x)&i\partial_t-h^*(x) \end{pmatrix}\check{G}(x,x')=\delta(x-x') \end{cases}$$

realistic system -> too complicated to be useful

Quasiclassical approximation (Eilenberger equation)

$$egin{bmatrix} -i\partial_t -h_{qc}(x) & \Delta(x) \ -\Delta^*(x) & i\partial_t -h^*_{qc}(x) \end{pmatrix}, \check{g}_{qc}(r) \end{bmatrix} = 0$$

-> compact effective equation for CMS-Green's function

Only approximation: $\xi_0, l, L \gg 1/k_F$

Discretized version of quasiclassical equations by 'electrical circuit'

Matrix current between two general nodes [Nazarov 99] (transmission eigenvalues $\{T_n\}$):

$$\check{I}_{12} = -rac{e^2}{\pi} \sum_n rac{T_n \left[\check{G}_1,\check{G}_2
ight]}{4 + T_n \left(\left\{\check{G}_1,\check{G}_2
ight\} - 2
ight)}$$

Our (toy) setup

Three terminal structure (one S and two N)

Main assumption:

- all leads are coherently coupled to central node
 - connectors characterized by set of transmission eigenvalue $\{T_n^i\}, i = 1, 2, S$
- finite propagation in node leads to
 Thouless energy $E_{Th} = \hbar D/L^2$

• $E_{Th}\ll\Delta$

Energy dependent spectral conductances

$$\begin{split} I_1(E) &= {\rm Tr} \hat{\sigma}_3(\check{I}_1)_K \;\; = \;\; \frac{G_{\rm EC}(E)}{e} \left[f_2(E) - f_1(E) \right] \\ &\quad + 2 \frac{G_{\rm DA}(E)}{e} \left[1 - f_1(E) - f_1(-E) \right] \\ &\quad + \frac{G_{\rm CA}(E)}{e} \left[1 - f_1(E) - f_2(-E) \right] \end{split}$$

Fermi factors indicate different processes

All $\{T_n^i\} \ll 1$ and $E \ll E_{Th}$

$$egin{aligned} G_{ extsf{EC}} &=& rac{g_1 g_2}{2} rac{2 \left(g_1 + g_2
ight)^2 + g_{ extsf{S}}^2}{\left[(g_1 + g_2)^2 + g_{ extsf{S}}^2
ight]^{3/2}} \ G_{ extsf{CA}} &=& rac{g_1 g_2}{2} rac{g_{ extsf{S}}^2}{\left[(g_1 + g_2)^2 + g_{ extsf{S}}^2
ight]^{3/2}}. \end{aligned}$$

• $G_{\text{EC}} > G_{\text{CA}}$: elastic cotunneling dominates! • limit $g_S \gg g_{1,2}$: $G_{\text{EC}} = G_{\text{CA}}$, exact cancellation

General analytical result

Spectral properties of central node -> pairing angle $\theta_c(E)$

Determines conductance factors: $G_{\text{T/L,i}}(\{T_n^{(i)}\}, heta_c) > 0$

Spectral conductances

$$\begin{split} G_{\mathsf{DA}}(E) &= \; \frac{1}{4} \left(\frac{G_{\mathsf{T},\mathsf{1}} \left(G_{\mathsf{T},\mathsf{2}} + G_{\mathsf{T},\mathsf{S}} \right)}{G_{\mathsf{T},\mathsf{1}} + G_{\mathsf{T},\mathsf{2}} + G_{\mathsf{T},\mathsf{S}}} - \frac{G_{\mathsf{L},\mathsf{1}} G_{\mathsf{L},\mathsf{2}}}{G_{\mathsf{L},\mathsf{1}} + G_{\mathsf{L},\mathsf{2}}} \right) \\ G_{\mathsf{EC}}(E) &= \; \frac{1}{2} \left(\frac{G_{\mathsf{L},\mathsf{1}} G_{\mathsf{L},\mathsf{2}}}{G_{\mathsf{L},\mathsf{1}} + G_{\mathsf{L},\mathsf{2}}} \pm \frac{G_{\mathsf{T},\mathsf{1}} G_{\mathsf{T},\mathsf{2}}}{G_{\mathsf{T},\mathsf{1}} + G_{\mathsf{T},\mathsf{2}} + G_{\mathsf{T},\mathsf{S}}} \right) \end{split}$$

- (unfortunate) general result: $G_{EC} > G_{CA}$
- however: energy dependence on scale of Thouless energy

Numerical results

Perfect contact to S: $\{T_n^S\} = 1$ tunneling contact to N: $\{T_n^S\} \ll 1$ Asymmetric junctions $g_S \gg g_{1,2}$

- quasiclassical description of nonlocal Andreev reflection
- energy dependence on Thouless energy
- elastic cotunneling dominates (for present setup)

Open question:

- other methods to detect nonlocal Andreev reflection
- detecting the entanglement (Bell-type measurement)

Tunneling Hamiltonian [Bignon, Houzet, Pistolesi, Hekking, EPL 04]

Tunnel Hamiltonian approach:

Current cross correlations

 $S_{12} = 2eG_{CA}|V_1 + V_2| - 2eG_{EC}|V_1 - V_2|$

Sign of cross correlations indicate type of process positive = crossed Andreev negative = elastic cotunneling Only tunnel junctions [Börlin, Belzig, Bruder, PRL 02]

Three tunnel junctions connected to common node

- ${}$ no dephasing $T \ll V \ll E_{Th}, \Delta$
- crosscorrelations

$$P_{12}=2\langle\delta I_1(t)\delta I_2(0)
angle_{\omega=0}$$

for g_N ≪ g_S or g_N ≫ g_S positive crosscorrelations -> crossed Andreev
 negative crosscorrelations around

 $g_N = g_S$ (even in the absence of elastic cotunneling)

- quasiclassical description of nonlocal Andreev reflection
- energy dependence on Thouless energy
- elastic cotunneling dominates (for present setup)
- positiv cross correlation in the coherent regime
- Open question:
- full counting statistics
- detecting the entanglement (Bell-type measurement)