ULTI III USER MEETING

"Quantum Phenomena at Low Temperatures" Lammi Biological Station, 7–11.01.2004

Cotunneling of Cooper pairs in superconducting SETs (with local resistors)

A.B. Zorin, S.V. Lotkhov, S.A. Bogoslovsky and J. Niemeyer

Physikalisch-Technische Bundesanstalt, Berlin und Braunschweig

Why resistors?

Overall phase behaves either classically or slightly fluctuates around class. values (phase slips possible)

 $\langle I_s(\phi) \rangle \neq 0$, at V = 0 (or at small values of V).

The Goal:

To investigate Cooper pair cotunneling (CPC), assuming transfer of individual pairs across the transistor.

Such regime is established at appreciable dissipation due to resistors,

$$R \gtrsim R_Q \equiv \frac{h}{4e^2} \approx 6.45 \, k\Omega$$

Motivation

To realize a regime of pumping Cooper pairs in the array of small Josephson junctions with local resistors

Such CP R-pump is potentially faster than the normal SET counterpart.

What is the benefit of using resistors in the pump?

- 1. They should suppress the tunneling across the whole device at non-zero (small) V the so-called N-tunneling.
- 2. They should suppress the so-called (N–1)-cotunneling:

3. They should decohere the islands and improve charge quantization (i.e., the pumping accuracy) even for $E_J \le E_c$.

Content of the talk:

Theory ~ 60%

Experiment ~ 40%

How to describe CP cotunneling?

first, regular CP tunneling...

Tunneling of a Cooper pair across one junction

Hamiltonian: $H = H_{env} + H_{es} - E_J \cos\phi$, $E_J = (\hbar/2e) I_c$

Phase variable ϕ is conjugate variable to the transferred charge Q, i.e. $[\phi,Q] = 2ei$.

The most straightforward procedure for finding the CP current is the perturbation theory.

Probability (rate) of single pair tunneling in positive direction:

$$\Gamma \propto \left| \left\langle \text{init} \left| -\frac{1}{2} \mathsf{E}_{\mathsf{J}} \mathsf{e}^{\mathsf{i}\phi} \right| \mathsf{fin} \right\rangle \right|^2$$
 - the Golden rule.

[Averin et al. (1990); Falci et al. (1991); Ingold and Nazarov (1992)]

Regime of **incoherent** tunneling of pairs at $(E_J/E_c)(R_Q/R)^{1/2} \ll 1$

Experiment with a single junction

L.S. Kuzmin et al., PRL 67, 1161 (1991).

...tunneling in 2-junctions system (transistor)?

Superconducting SET - parameters and assumptions

2 regimes...

Regime of sequential tunneling (ST) of pairs in superconducting SET:

Stability diagram for Cooper pairs (T = 0):

ST current is blocked, but cotunneling (across 2 junct.) possible...

Tunneling across both junctions in one step and without "landing" on the island!

 $\Gamma_{\rm cot} \propto {\rm E_J^4}$

Classification (according to Averin-Nazarov): elastic cotunneling of charge (cf. normally inelastic cotunneling in SET) What is difference between tunneling across ONE junction and TWO junctions?

In a single junction: $E_{junc} = -E_J \cos \phi$ and $I_S = I_c \sin \phi$

Variables \oint and ϕ commute and at small C₀ variable ϕ is decoupled from the bath!

One can perform:

- 1. Quantum mechanics with variables ϕ –Q and get an effective Josephson energy of the transistor $E_{trans}(Q_0, \phi)$,
- 2. Perturbation theory for the outer variable ϕ (finding of Γ).

$$\mathbf{H} = \begin{bmatrix} \mathbf{H}_{charge} + \mathbf{H}_{Jos} \\ + \mathbf{H}_{source+bath+interaction}(\mathbf{\varphi}), \end{bmatrix}$$

$$H_{charge} = \frac{(Q + Q_0)^2}{e^2} E_c$$

$$H_{loc} = -E_{l1} \cos\varphi_1 - E_{l2} \cos\varphi_2 = -(E_{l1}^2 + E_{l2}^2 + 2E_{l1}E_{l2} \cos\varphi_1)^{\frac{1}{2}} \cos[\varphi_1 - E_{l2} \cos\varphi_2] = -(E_{l1}^2 + E_{l2}^2 + 2E_{l1}E_{l2} \cos\varphi_1)^{\frac{1}{2}} \cos[\varphi_1 - E_{l2} \cos\varphi_2] = -(E_{l1}^2 + E_{l2}^2 + 2E_{l1}E_{l2} \cos\varphi_1)^{\frac{1}{2}} \cos[\varphi_1 - E_{l2} \cos\varphi_2] = -(E_{l1}^2 + E_{l2}^2 + 2E_{l1}E_{l2} \cos\varphi_1)^{\frac{1}{2}} \cos[\varphi_1 - E_{l2} \cos\varphi_2]$$

$$\begin{split} I_{Jos} = -\mathsf{E}_{J1}\cos\varphi_1 - \mathsf{E}_{J2}\cos\varphi_2 &= -(\mathsf{E}_{J1}^2 + \mathsf{E}_{J2}^2 + 2\mathsf{E}_{J1}\mathsf{E}_{J2}\cos\varphi)^{\overline{2}}\cos[\varphi + \gamma(\varphi)],\\ \text{where}\quad \tan\gamma = \frac{\mathsf{E}_{J1} - \mathsf{E}_{J2}}{\mathsf{E}_{J1} + \mathsf{E}_{J2}}\tan\frac{\varphi}{2},\\ [\varphi, \mathbf{Q}] = 2\mathsf{e}\mathsf{i} \end{split}$$

After diagonalization:

$$H_{charge} + H_{Jos} = H_{trans}(Q_0, n, \phi)$$

$$\uparrow$$
Bloch band index

Ground state: $H_{trans}(Q_0, 0, \phi) = E_{trans}(Q_0, \phi)$

- **1.** The phase dependence of E_{trans} is no longer harmonic,
- 2. The effective Josephson coupling energy depends on Q₀.

Josephson supercurrent, $I_s = \frac{\partial E_{trans}}{\partial \varphi}$...

Supercurrent across superconducting SET versus total phase ϕ

[A.Z. 1997]

Away from points $Q_0 = \pm e$: $E_{trans}(Q_0, \varphi) \approx -E_J(Q_0) \cos \varphi$, with $E_J(Q_0) = \frac{\lambda_0^2}{4} \left(\frac{\Phi_0}{2\pi}\right) E_c \left[1 - \left(\frac{Q_0}{e}\right)^2\right]^{-1} \propto \lambda_0^2$,

that is due to the wave function of the island of type:

$$\Psi(\mathbf{Q}_{0}) \approx e^{i\mathbf{k}\varphi} + \frac{\lambda_{0}}{4(1+2\mathbf{k})}e^{i(\mathbf{k}+1)\varphi} + \frac{\lambda_{0}}{4(1-2\mathbf{k})}e^{i(\mathbf{k}-1)\varphi}, \quad \mathbf{k} = \frac{\mathbf{Q}_{0}}{2e}$$

[Likharev & A.Z., 1985]

Rate of cotunneling away from the points $Q_0 = \pm e$ (note, in experiment normally $-e/2 \le Q_0 \le e/2$):

$$\Gamma_{\rm cot}(\mathsf{V}) = \frac{\pi}{2\hbar} \mathsf{E}_{\mathsf{J}}^2(\mathsf{Q}_0) \,\mathsf{P}(2\mathsf{eV}) \propto \lambda_0^4$$

I-V curve: $I \approx I_{cot} = 2e [\Gamma_{cot}(V) - \Gamma_{cot}(-V)]$,

because sequential tunneling is exponentially suppressed: $I_{seq} \propto exp(-2E_c/k_BT)$.

Infrequent qp tunneling usually returns the values of Q_0 to the interval (-e/2,e/2)

Expected depth of the dc current modulation:

$$\frac{I_{max}}{I_{min}} = \frac{(I_{cot})_{max}}{(I_{cot})_{min}} = \frac{E_J^2(\pm e/2)}{E_J^2(0)} = \frac{16}{9} \approx 1.78$$

For <u>ohmic</u> environment, the analytic expression for function P(E) is available [Ingold et al. (1994)]; using it we get:

$$I_{cot}(\mathbf{Q}_{0},\mathbf{V}) = \frac{\pi^{2}}{\Phi_{0}} \underbrace{\frac{\mathsf{E}_{J}^{2}(\mathbf{Q}_{0})}{\mathsf{E}_{c}}}_{\begin{array}{c}\mathsf{Gate}\\\mathsf{dependence}\end{array}} e^{-2\gamma\rho}\rho^{2\rho} \left(\frac{2\mathsf{E}_{c}}{\pi^{2}\mathsf{k}_{B}\mathsf{T}}\right)^{1-2\rho} \underbrace{\frac{\left|\Gamma\left[\rho-i\frac{\mathsf{e}\mathsf{V}}{\pi\mathsf{k}_{B}\mathsf{T}}\right]\right|^{2}}{\Gamma(2\rho)}\mathsf{sinh}\left(\frac{\mathsf{e}\mathsf{V}}{\mathsf{k}_{B}\mathsf{T}}\right)}_{\begin{array}{c}\mathsf{Transport voltage dependence}\end{array}}$$

Here Γ is Gamma function, $\gamma = 0.577...$ Euler's constant

This formula valid for
$$\mbox{I}_{cot} \ll \rho \mbox{I}_{c}^{trans}$$
 , where $ho = \mbox{R}/\mbox{R}_{Q}$ $eV \ll \mbox{E}_{c}$

experiment...

Sample layout

Typical parameters

Junctions: Al/AlO_x/Al; C_∑≈ 500 aF, E_c = $e^{2}/2C_{\Sigma}$ ≈ 150 µeV; Δ_{Al} ≈ 200 µeV; $E_{J1,J2} = E_{J0} = (\Phi_{0}/2\pi)I_{c0} \approx 30 \text{ µeV}$; $I_{c0} \approx 16 \text{ nA}$; $E_{J}/E_{c} \approx 0.2$ Resistors: R = 2–20 kΩ; w = 100 nm, h = 7 nm, l = 0.3–3 µm; material - Cr; $R_{square} = 0.55 - 0.7 \text{ k}\Omega$

Effect of the transistor gate on the I-V curve

Period of modulation = 1e, i.e. qp poisoning took place!

Transport voltage dependence

Gate dependence of cotunneling current

$$E_J/E_c \sim 0.2$$
; R = 3.3 k Ω

- • exp. data
 - theory, accessible range
 - theory, inaccessible range

 $I_{max}/I_{min} \sim 2$, in fairly good agreement with theory (= 1.78)

Suppression of CP current at larger values of R

correspond to maximum current (presumably,

For ohmic environmental impedance:

$$\begin{split} I_{cot} = I_0 \bigg(\frac{V}{V_0} \bigg)^{2\rho-1}, \quad \text{where} \quad I_0 = \frac{\pi \rho \Phi_0 e^{-2\gamma} (I_c^0)^2}{32\Gamma(2\rho)E_c} \quad \text{and} \quad V_0 = \frac{2e}{\pi\rho C}. \end{split}$$
$$\rho = R/R_Q, \quad T = 0. \end{split}$$

Comparison with experimental data

Possible application of the effect of suppression of Cooper pair cotunneling

Cooper pair pump

$R \ge 4.5 R_Q$ should efficiently suppress CP cotunneling.

Conclusion

- 1. Cotunneling of CP in superconducting SET can be described by the model of "effective Josephson element".
- 2. Cotunneling in CP pump can be significantly suppressed by a local resistor.

Reference: S.V. Lotkhov et al. PRL 91, 197002 (3 Nov. 2003)