Superfluid turbulence in rotating ³He-B

Experiment:	Theory:
R. Blaauwgeers	G.E. Volovik
V.B. Eltsov	N.B. Kopnin
A.P. Finne	
M. Krusius	
L. Skrbek (Prague)	

Simulations:

T. Araki (Osaka)

M. Tsubota (Osaka)

J. Kopu

R. Hänninen

Low Temperature Laboratory Helsinki University of Technology

Overview

- Introduction to the experiment
- Experimental observations on:
 - Criteria for turbulence
 - Sequence of events
- ³He compared to ⁴He:
- High viscosity of normal component
- NMR
- Range of mutual friction
- Vortex formation different

Vortex states

intermediate

solid-body rotation

maximum energy state
normal component in corotation with the bucket
superfluid stationary in laboratory frame

minimum energy state
superfluid mimics solid-body rotation
total number of vortex lines:

$$N = \pi R^2 \frac{2\Omega}{\kappa}$$

Overview of the Experiment

Experimental setup

Rotation up to 4 rad/s
Magnetically stabilized AB phase boundary for vortex line injection

Mechanisms for vortex formation

Shear-flow instability Kibble-Zurek of AB interface

after neutron capture

Flow through orifice

Wall defect

Shear-flow instability of the AB phase boundary

•A phase has low Ω_c and B phase high Ω_c

•A mimics solid body rotation

•B does not move

•Under rotation a velocity difference between the superfluids form, "wind"

•Phase boundary becomes unstable and vortex lines are injected to the B phase

•Number of vortex lines injected N~10

• Velocity where vortex lines are injected can be tuned with magnetic field

NMR on ³He-B

Vortex formation at high T

High T

Low T

Number of vortex lines per event as a function of T

Transition to turbulence

Transition to turbulence

Discussion

For classical liquids, taking $\omega = \nabla \times v$

For superfluids with v_n=0, Re_s=UR/ κ >1 and $\omega_s = \langle \nabla \times v_s \rangle$ averaged over vortex lines

$$\frac{\partial \omega_s}{\partial t} = (1 - \alpha') \nabla \times [v_s \times \omega_s] + \alpha \nabla \times [\hat{\omega}_s \times (\omega_s \times v_s)]$$

inertial $\sim (1 - \alpha') U \omega / R$ viscous $\sim \alpha U \omega / R$ inertial $= \frac{1 - \alpha'}{\alpha}$

Spectra of turbulent events

Timinaa

Flight time

Trailing edge τ as a function of T

Trailing edge τ as a function of Ω

 Ω , rad/s

Experiment in scale

Equilibrum vortex state

Layer thickness

Conclusions

- Two clear regimes in ³He-B: laminar and turbulent
- In our experiment we see a "turbulent layer" propagating through the sample
- Why does the trailing edge τ decrease towards lower T?