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Coherent oscillations in a charge qubitCoherent oscillations in a charge qubit

• The qubit
• The read-out
• Characterization of the Cooper pair box
• Coherent oscillations
• Measurements of relaxation and

decoherence times

Tim Duty, Kevin Bladh, David Gunnarsson

Rob Schoelkopf Yale University
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A Single CooperA Single Cooper--pair Box Qubitpair Box Qubit
Integrated with an RFIntegrated with an RF--SET ReadSET Read--out systemout system

RF-SET

V

single
Cooper-pair
box

|1> = One extra Cooper-pair in the box
|0> = No extra Cooper-pair in the box Bouchiat et al. Physica Scripta (99)

Nakamura et al., Nature (99)
Makhlin et al. Rev. Mod. Phys. (01)
Aassime, et al., PRL (01)
Vion et al. Nature (02)
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The The QubitQubit
The The Single Single CooperCooper--pair pair Box (SCB)Box (SCB)
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The Single CooperThe Single Cooper--pair box (SCB)pair box (SCB)

H =
Q2

2CΣ

− EJ cosθ = 4EC (n − ng )2 − EJ cosθ

EC =
e2

2C
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Q
2e
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The SCB as a two level system and qubitThe SCB as a two level system and qubit
H = 4EC (n − ng )

2 − EJ cosθ

using ket representation we get

H = 4EC n − ng( )2
n

n
∑ n − 1

2 EJ n n +1 + n +1 n( )
n
∑

If we assume that EJ << EC  and we stay close to the
degeneracy point, only two states, 0  and 1 , matters.
Thus we get :

H = 4ECh (Vg )
1 0
0 1

 

 
 

 

 
 − 1

2 EJ (B)
0 1
1 0

 
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 

 

 
 

= 4ECh (   )σ z − 1
2 EJ (   )σ xVg B

Ψ = α 0 + β 1 =
α
β

 

 
 

 

 
 

α and β are complex numbers
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The readThe read--outout
The RadioThe Radio--Frequency SingleFrequency Single--ElectronElectron--Transistor Transistor 

(RF(RF--SET)SET)
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The RadioThe Radio--FrequencyFrequency
Single Electron TransistorSingle Electron Transistor

Very high speed:Very high speed: 137 MHz137 MHz
R. Schoelkopf, et al. Science (98)R. Schoelkopf, et al. Science (98)

Very high sensitivity:Very high sensitivity: 3.2 µe/√Hz3.2 µe/√Hz
Limited by cold amplifiersLimited by cold amplifiers
A. Aassime, et al., APL (01)A. Aassime, et al., APL (01)

Typical values ∂Q= 30 µe/√Hzµe/√Hz
BwBw= 15 MHz= 15 MHz
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SET IVSET IV--characteristicscharacteristics
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The The sample holdersample holder
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Controlling the charge on the boxControlling the charge on the box
The Coulomb StaircaseThe Coulomb Staircase
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Temperature dependence of the 
staircase in the normal state
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The Coulomb staircase comparing the normal The Coulomb staircase comparing the normal 
and the superconducting stateand the superconducting state
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Very good control

Very sensitive read-out
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What would What would you you expect expect in the in the superconducting statesuperconducting state
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,  

L = size of long step
S = size of short step

Using EC<1.2K pure 2e
periodicity is obtained

Tuominen et al. PRL (93)
Lafarge et al. Nature (93)
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SpectroscopySpectroscopy
Determining EDetermining ECC and Eand EJJ
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Energy Levels of the CooperEnergy Levels of the Cooper--Pair BoxPair Box
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Characterization of the CooperCharacterization of the Cooper--pair box: pair box: 
Determining EDetermining EJJ and Eand ECC
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2e2e--periodic staircase: Experiment vs. theoryperiodic staircase: Experiment vs. theory

EC and EJ extracted
from spectroscopy

Stair case fit with
no free parameters

Derivative of
the staircase
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Staircase with Tunable EStaircase with Tunable EJJ
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Coherent oscillationsCoherent oscillations
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Manipulation with dcManipulation with dc--pulses pulses 
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The probability to find 
the qubit in the exited 
state oscillates as a 
function of ∆t.

After ∆t the charge is 
measured by the
RF-SET
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Continuous measurement with dcContinuous measurement with dc--pulses pulses 
TTrr=59ns, amplitude 1e pulse train=59ns, amplitude 1e pulse train

T  =59 nsr

Amplitude up to 70%,
Difference from 100% can be 
explained by finite rise time of 
the pulses (30 ps)

Difference between these two 
curves = excess charge ∆Qbox

trise≈30ps
pulse train off
pulse train on
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Coherent oscillationsCoherent oscillations
excess charge ∆excess charge ∆QboxQbox vs. vs. nngg and ∆tand ∆t

Oscillation frequency = EJ/h
Agrees well with EJ from 
spectroscopy

Seen in 5 different samples

Note dead zones
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Oscillations at the charge degeneracyOscillations at the charge degeneracy
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f01=4.3GHz, T2≈10 ns Bad news:
T2 ~10 ns

Good news: 
• We observe oscillations
• A very high fidelity! >70%
Deviation from 1.0 e due to finite risetime
(~30ps) of pulses, i.e. no missing amplitude
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Comparison: EComparison: EJJ fromfrom
Spectroscopy and from coherent oscillationsSpectroscopy and from coherent oscillations

EJ is modulated with perpendicular B-field
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Possible sources of decoherencePossible sources of decoherence
• The SET: The continuous measurement can of course decohere

the system, pulsed measurements should improve the situation.  

• Non-equilibrium quasi particles may be present in the system. 
Transition between exited state and qp state (Zorin, cond-
mat/0312225)

• Back ground charges are known as an important source of 
decoherence. At the degeneracy point, that decoherence should be
drastically reduced.  However, if the dc-pulse is not perfectly 
square, the system is not exactly at the degeneracy point during the 
evolution. Then background charge noise couples stronger to the 
system.

• DC-pulses may shake up background charges or other resonant 
modes (environment, cavity etc.)

• Flux-noise: Less likely, we will test a box without squid-loop
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MeasurementsMeasurements of Tof T1 1 and Tand T22
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Decoherence and mixingDecoherence and mixing
The qubit can be disturbed in two different ways.

Relaxation or mixing
• The environment can exchange energy 

with the qubit, mixing the two states by 
stimulated emission or absorption. This 
has the characteristic time T1

• Describes the diagonal elements in the 
density matrix

• Fluctuations at resonance, S(ω01)

T1 T2

Decoherence
• The environment can create loss of phase 

memory by smearing the energy levels, 
thus changing the phase velocity. This 
process requires no energy exchange, and it 
has the characteristic time T2

• Describes the decay of the off-diagonal 
elements in the density matrix

• Fluctuations at low frequencies, S(0)
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Determining a TDetermining a T11 that is smaller than that is smaller than TTmeasmeas
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TT11 Measurements  Measurements  vsvs QQ00 and Eand EJJ provide info on provide info on 
S(S(ωω) and form of coupling) and form of coupling
Γrelax ≡ T1

−1 = κ sin2ηS ω = ∆E( )
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We find TWe find T11 short and independent of short and independent of 

SET bias in 6 different samplesSET bias in 6 different samples.
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DephasingDephasing far away from charge degeneracyfar away from charge degeneracy
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Measurements of TMeasurements of T22 vs. gate charge Qvs. gate charge Q00
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SummarySummary
• 2e periodic staircase for EC<1.2 K
• Characterized Cooper-pair box, EC and EJ

determined with good accuracy
• Observed coherent oscillations in 5 samples, 

oscillation period agrees well with EJ

• T1≤100ns, scales with sin2η intermediate gate charge
• T2≤10ns, due to charge noise
• T2 ≈ T1 at the degeneracy point
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Microwave irradiation of the CooperMicrowave irradiation of the Cooper--pair boxpair box
By irradiating the ”atom” with microwaves, we can 
change the population of the levels. This also allows us to 
determine the parameters of the artificial atom: EC and Ej.
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The Single-Cooper-
Pair Box:
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Determining TDetermining T22
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