Coherent oscillations in a charge qubit

- The qubit
- The read-out
- Characterization of the Cooper pair box
- Coherent oscillations
- Measurements of relaxation and decoherence times

Tim Duty, Kevin Bladh, David Gunnarsson

Rob Schoelkopf Yale University

Per Delsing

A Single Cooper-pair Box Qubit Integrated with an RF-SET Read-out system

|1> = One extra Cooper-pair in the box |0> = No extra Cooper-pair in the box

Bouchiat et al. Physica Scripta (99) Nakamura et al., Nature (99) Makhlin et al. Rev. Mod. Phys. (01) Aassime, et al., PRL (01) Vion et al. Nature (02)

MC₂

Per Delsing

The Qubit The Single Cooper-pair Box (SCB)

Per Delsing

AC2

Per Delsing

The SCB as a two level system and qubit

$$H = 4E_C(n - n_g)^2 - E_J \cos\theta$$

using ket representation we get

$$H = 4E_C \sum_{n} \left(n - n_g\right)^2 \left|n\right\rangle \left\langle n\right| - \frac{1}{2}E_J \sum_{n} \left(n\right) \left\langle n + 1\right| + \left|n + 1\right\rangle \left\langle n\right|\right\rangle$$

If we assume that $E_J \ll E_C$ and we stay close to the degeneracy point, only two states, $|0\rangle$ and $|1\rangle$, matters. Thus we get :

$$H = 4E_{Ch}(V_g) \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} - \frac{1}{2}E_J(B) \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$= 4 E_{Ch}(V_g) \sigma_z - \frac{1}{2} E_J(B) \sigma_x$$

$$|\Psi\rangle = \alpha |0\rangle + \beta |1\rangle = \begin{pmatrix} \alpha \\ \beta \end{pmatrix}$$

 α and β are complex numbers

$$\left|0\right\rangle = \begin{pmatrix}1\\0\end{pmatrix}, \left|1\right\rangle = \begin{pmatrix}0\\1\end{pmatrix}$$

MC₂

Per Delsing

The read-out The Radio-Frequency Single-Electron-Transistor (RF-SET)

Per Delsing

The Radio-Frequency Single Electron Transistor

Very high speed: 137 MHz R. Schoelkopf, et al. Science (98)

Very high sensitivity: $3.2 \ \mu e/\sqrt{Hz}$ Limited by cold amplifiersA. Aassime, et al., APL (01)

Typical values

 $\partial Q = 30 \ \mu e / \sqrt{Hz}$ Bw= 15 MHz

Per Delsing

Chalmers University of Technology

Chalmers University of Technology

The sample holder

MC₂

Per Delsing

Controlling the charge on the box The Coulomb Staircase

Per Delsing

Temperature dependence of the staircase in the normal state

Per Delsing

The Coulomb staircase comparing the normal and the superconducting state

Per Delsing

What would you expect in the superconducting state

$$\tilde{\Delta} \approx \Delta_0 - k_B T \ln(N)$$

$$\Delta_0 \approx 2.4 \text{ K for Al}$$

$$\tilde{\Delta} \approx \frac{L - S}{L + S},$$

$$L = \text{size of long step}$$

$$S = \text{size of short step}$$

Using $E_C < 1.2K$ pure 2e periodicity is obtained

Tuominen et al. PRL (93) Lafarge et al. Nature (93)

Per Delsing

Spectroscopy Determining E_C and E_J

Per Delsing

MC2

Per Delsing

MC2

Characterization of the Cooper-pair box: Determining E_J and E_C

Per Delsing

2e-periodic staircase: Experiment vs. theory

E_C and **E**_J extracted from spectroscopy

Stair case fit with no free parameters

Derivative of the staircase

MC2

Per Delsing

Staircase with Tunable E_J

Per Delsing

Coherent oscillations

Per Delsing

Per Delsing

Continuous measurement with dc-pulses T_r=59ns, amplitude 1e pulse train

∆t≈100ps t_{rise}≈30ps

Amplitude up to 70%, Difference from 100% can be explained by finite rise time of the pulses (30 ps)

Difference between these two curves = excess charge ΔQ_{box}

Per Delsing

Coherent oscillations excess charge Δ **Qbox vs.** n_g and Δ t

Per Delsing

Oscillations at the charge degeneracy

Per Delsing

Comparison: E_J from **Spectroscopy and from coherent oscillations**

E_J is modulated with perpendicular **B**-field

perpendicular B-field

Per Delsing

Possible sources of decoherence

- **The SET: The continuous measurement** can of course decohere the system, pulsed measurements should improve the situation.
- **Non-equilibrium quasi particles** may be present in the system. Transition between exited state and qp state (Zorin, condmat/0312225)
- **Back ground charges** are known as an important source of decoherence. At the degeneracy point, that decoherence should be drastically reduced. However, if the dc-pulse is not perfectly square, the system is not exactly at the degeneracy point during the evolution. Then background charge noise couples stronger to the system.
- **DC-pulses** may shake up background charges or other resonant modes (environment, cavity etc.)
- Flux-noise: Less likely, we will test a box without squid-loop

Measurements of T₁ and T₂

Per Delsing

Decoherence and mixing

The qubit can be disturbed in two different ways.

Relaxation or mixing

- The environment can exchange energy with the qubit, mixing the two states by stimulated emission or absorption. This has the characteristic time T_1
- Describes the diagonal elements in the density matrix
- Fluctuations at resonance, $S(\omega_{01})$

Decoherence

- The environment can create loss of phase memory by smearing the energy levels, thus changing the phase velocity. This process requires no energy exchange, and it has the characteristic time T₂
- Describes the decay of the off-diagonal elements in the density matrix
- Fluctuations at low frequencies, S(0)

MC2

Per Delsing

Per Delsing

T₁ Measurements vs Q₀ and E_J provide info on **S(ω) and form of coupling**

$$\Gamma_{relax} \equiv T_1^{-1} = \kappa \sin^2 \eta S(\omega = \Delta E)$$

Per Delsing

We find T₁ short and independent of SET bias in 6 different samples.

Per Delsing

Dephasing far away from charge degeneracy

twin pulse: At=0ps to10ns

Rotation in x-y plane

•(Nakamura et al. 2002)

T₂ =180ps and large initial amplitude

Per Delsing

Measurements of T₂ vs. gate charge Q₀

Q_0 dependence \rightarrow coupling to charge

Very similar to data from NEC

Per Delsing

Summary

- 2e periodic staircase for E_C<1.2 K
- Characterized Cooper-pair box, E_C and E_J determined with good accuracy
- Observed coherent oscillations in 5 samples, oscillation period agrees well with E_J
- $T_1 \leq 100$ ns, scales with $\sin^2 \eta$ intermediate gate charge
- $T_2 \leq 10$ ns, due to charge noise
- $T_2 \approx T_1$ at the degeneracy point

Microwave irradiation of the Cooper-pair box

By irradiating the "atom" with microwaves, we can change the population of the levels. This also allows us to determine the parameters of the artificial atom: E_C and E_i .

T₂ =110ps, from spectroscopic peak width

 $T_2 = 105 \text{ps}$, from twin $\pi/2$ pulses

Per Delsing