Cooper pair sluice: A fluxassisted charge pump

Jani Kivioja¹, Antti O. Niskanen^{1,2},Jukka Pekola¹ and Heikki Seppä² (1) Low Temperature Laboratory, HUT (2) VTT Information Technology, Microsensing

Intro/theory

- Based on: A.O. Niskanen, J.P. Pekola, and H. Seppä, Phys. Rev. Lett. 91, 177003 (2003).
- What is a charge pump?.
- An adiabatic Cooper pair pump? *I=2nef*
- Charge pump outputs a DC current in response to an AC signal
- Cooper pair pumps are in principle capable of producing a higher current.
- Typically: long arrays with voltage gates or e.g. Surface Acoustic Wave pumps..
- Modulating each gate in turn leads to controlled tunneling of n (2n) charges per cycle.

Pumping of single electrons

H. Pothier, P. Lafarge, C. Urbina, D. Esteve, M. Devoret, EPL 17, 249 (1992).

Martinis at al., Appl. Phys. Lett. 69, 1804 (1996).

1/12/2004

Our design: Cooper pair "sluice"

- It is an adiabatic Cooper pair pump / A two-end Cooper pair box.
- Just one mesoscopic superconducting island, two SQUIDs (tunable junctions) and a gate voltage.
- Voltage controls the gate charge.
- Flux through SQUIDs modulates the effective Josephson energy. (sluice doors)
- Only three controls. These are periodically modulated.

Model parameter sequence:

- Can be generalized to pump 2ne. (n=1,2,...?)
- Several practical issues and sources of error:
 - Non-adiabaticity
 - non-ideal suppression of E_J
 - environmental *impedance*
 - background charge noise
 - Quasiparticles
- But: tolerant against 1/f background charge fluctuations and insensitive towards the definite operating point. (provided k_BT is small)
- Quasiparticles should not be a problem in theory.

Adiabaticity errors:

- Error in the pumped charge for ideal suppression of E_J.
- 0.1-0.2 nA at <10^{-6.}

•
$$f_J \equiv E_J^{max} / \hbar = e^2 / C\hbar \approx 300 \times 10^9 s^{-1}$$

•
$$\mathcal{E} \equiv 1 - Q_P / 2ne \equiv \Delta I / I$$

Non-ideal suppression of E_I

Adiabatic approximation

(J.P. Pekola, J. J. Toppari, M.T. Savolainen and D.V. Averin PRB **60**, R9931 (1999).)

 $Q_P = -2e\frac{\partial}{\partial\varphi} \left(\theta_{\text{Berry}}\right)$

(M. Aunola and J. Toppari PRB **68**, 020502 (2003).)

$$Q_{\rm P}/(2e) \simeq 1 - \frac{2\sqrt{(E_{\rm J}^{\rm max})^2 + E_{\rm C}^2}}{E_{\rm J}^{\rm max}E_{\rm C}} E_{\rm J}^{\rm res} \cos \varphi$$

- Cooper pair is tunneling in "wrong" direction...
- Also sinφ dependent superconducting leakage current...

Suppression of $E_{\rm J}$ (closing the doors)

- In practice, 0.1-1% is good enough and should be possible experimentally. Limits set by:
 - □ Asymmetry of the junctions (3 junctions ? →) $E_{J^1} \overset{I}{\bigstar} \Phi_1 \overset{I}{\bigstar} E_{J^2}$
 - Self-inductance
 - Flux noise
- Still: two error terms: $\sim \cos \varphi \ \& \sim \sin \varphi$.
- Phase fluctuations (or constant voltage) can cancel these without suppressing tunneling.
- Therefore the environmental impedance is in key role...

Very first measurements on the "sluice"

- We have measured at around 20mK in a two-probe setting:
 - □ 1e and 2e periodicity -> $C_q \approx 0.3 \text{ fF}$.
 - Flux modulation
 - Pumping
 - Heavy quasiparticle leakage underneath due to a heating input coil
 - Also supercurrent leakage
 - However, as high as 0.3 nA pumped currents
 - Future looks bright

Measurement

Fridge

Minimum temp. around 20 mK
High filtering needed for cooling electron gas also!
High frequency lines have BW up to 12 GHz

E_c≈1.2K and E_J≈2.2K

Flux modulation of current and pulsing

Theoretical prediction for effective I_c with 10% cross coupling

red = large current blue=small current

Current in coil 1

 $I_{c} \sim |\cos(L_{11}I_{1} + L_{12}I_{2})\cos(L_{22}I_{2} + L_{21}I_{1})|$

-Measured sample cross-coupling is about 10 % and can be effectively compensated

Pumping at 5MHz

IV's with different gatings (max gate amplitude $\approx 0.2~V$)

Different IVcurves are obtained with different gate amplitudes. Heavy quasiparticle contribution but *difference* obeys I≈2enf.

Pumping vs. frequency (non-ideal V_{bias})

About half is missing at this bias point (due to bad bias) but frequency response is roughly linear.

Conclusions

- The Cooper pair sluice is a novel single-island tunable Cooper pair box that acts as an accurate and high-yield flux and voltage driven adiabatic charge pump.
- May be useful in metrology (triangle), in QC and other fields (?).
- Strengths: We expect to get more current ~0.1 nA at sub ppm error with less controls
- First measurements have been carried out and results are very promising:
 - Frequency and amplitude response is linear and current changes direction under π -phase shift.
 - Max. current is very high: 0.3 nA with 5 MHz.
- Things to improve: Environment, V-bias electronics, and quasiparticles (i.e. working coil).
- We expect to get rid of (most of) pumping errors with these improvements.
- See: [1] A.O. Niskanen, J.P. Pekola, and H. Seppä, PRL 91, 177003 (2003).