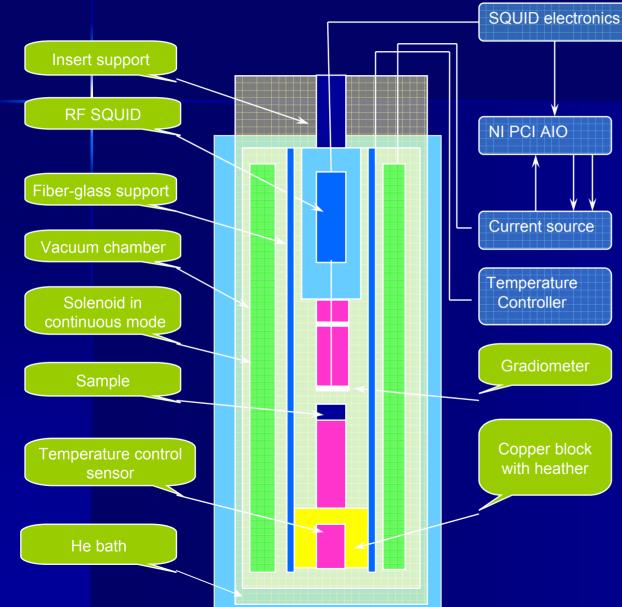
Spectroscopy of quasi-particle scattering in superconductors

Z. Janů, M. Novák, F. Soukup, R. Tichý, G.M. Tsoi

Joint Low Temperature Laboratory (IP ASCR&FMF ChU), Prague, Czech Republic

Samples: A. Bondarenko, TU Kharkov, Ukraine M. Gaiffulin, U Tokyo, Japan X.L. Wang TU Linz, Austria V. Buntar, AI Wien, Austria

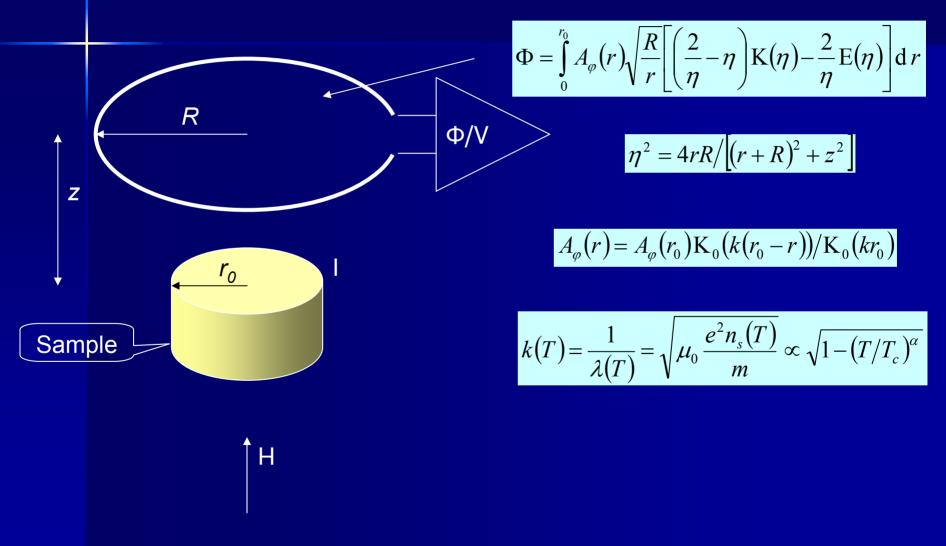

Motivation

- S-N transition close T_{σ} with $\delta T \sim 1$ mK and almost single vortex resolution on high-quality single crystals or epitaxial films
- Vortex matter phases diagram close T_c
- *M*(*T*)
- $M(H), H_{c1}(T), \text{ and } H_{c2}(T)$
- *M*(*t*)

S-N transition magnetization curves, phase diagram flux relaxation with ms resolution

Domain non accessible by commercial magnetometers

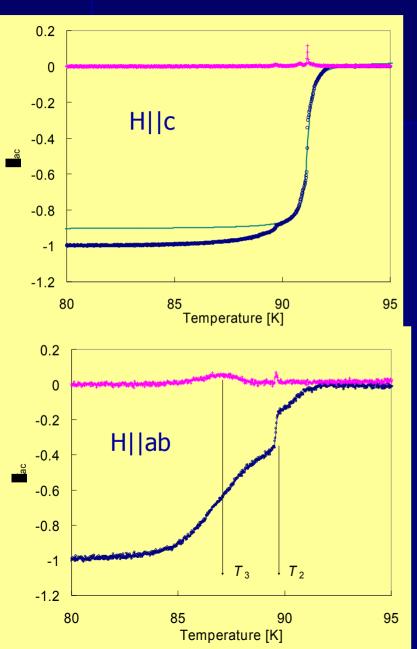
High Resolution SQUID Magnetometer

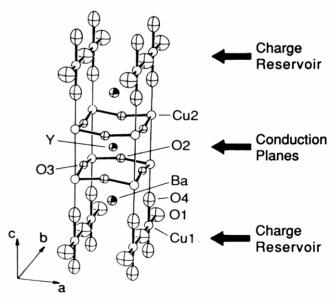


Sample stationary both with respect to the solenoid and detection system Field range (ac&dc) < 138 µT Residual noise ~1 nT Frequency range 0.01-10 Hz Temperature range 4.2-150 K Temperature stability and resolution 1 mK OUT: AWG: applied field (dc&ac) IN: H(t) [V], $\Phi(t)$ [V] => FFT $=>H(f), \Phi(f),$

f from dc to 2 kHz

Contact-less bulk measurement


Shielding current *I* is induced in the sample by applied field *H*


YBCO single crystal in H||c and H||ab

The real part is bl

one is read.

The T_1 transition occurs in *ab* plane, while T_2 and T_3 transitions occur in *c*-axis direction. The T_1 transition shows appearance of 2D superconductivity in CuO₂ layers. Below T_2 become superconducting CuO₂-Y-CuO₂ bi-layers. Above T_2 the Y layers are in normal state while SNS sandwiches become superconducting due to a proximity effect. In **H**||*c* this transitions is masked by superconducting CuO₂ layers. Finally, below T_3 the CuO₂-Y-CuO₂ sandwiches become weakly coupled and super-current tunnels through the Ba-CuO-Ba barriers. At even lower temperature the superconductivity is 3D.

Janu Z. et al., Physica C 388-9 (2003) 751

Fig. 1. Structure of $YBa_2Cu_3O_{6+x}$ showing the charge reservoir and conduction plane regions associated with the charge transfer model.

Superconducting multilayers with different T_c

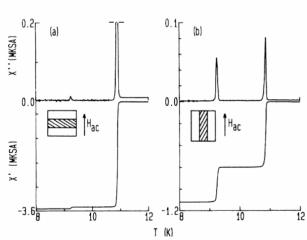


FIG. 5. Simulation of the screening effect with NbTi plate sandwiched between two NbZr plates. (a) h_{ac} (1 Oe) perpendicular to the plates. The signal $\Delta X'$ corresponding to the transition of NbTi plate is around 1.8% of the whole transition. (b) For H_{ac} (0.1 Oe) parallel to the plates the transition of NbTi is around the expected value of 36% (no screening effect in this case).

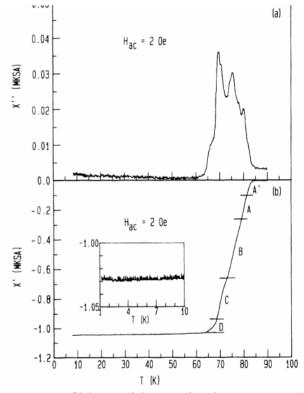
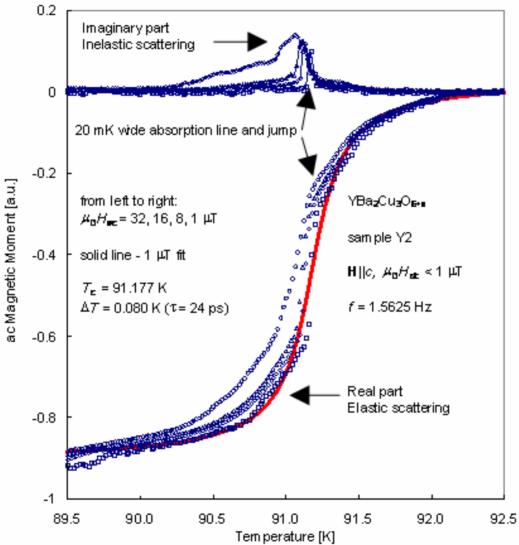
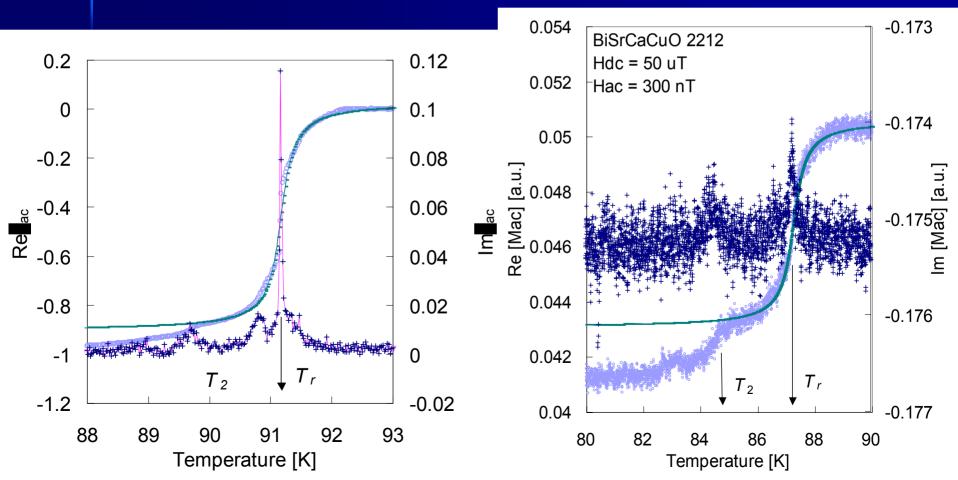



FIG. 1. X''(T) and X'(T) for H_{ac} (2 Oe) parallel to the *ab* basal plane show different superconducting phases A', A, B, C, D. The inset shows the X'(T) variation at low temperature.

© 1988 The American Physical Society


YBCO in H]]c

 Ac field dependence

"Universal" behavior of YBCO and BSCCO

Y2: 0.29x1.725 mm², 35 μ m thickness H||c, $\mu_0 H_{ac} = 1 \ \mu$ T, $\mu_0 H_{dc} = 0 \ \mu$ T, f = 1.5625 Hz B17A: 700x840 μ m², 40 μ m thickness H||c, $\mu_0 H_{ac}$ = 300 nT, $\mu_0 H_{dc}$ = 50 μ T, f = 1.5625 Hz

Problems:

Standard models explain the temperature dependence of the susceptibility due to a flux penetration length, which depends on the superfluid density:

Two fluid Casimir-Gorter model: $n_s(T) \sim 1 - (T/T_c)^4$

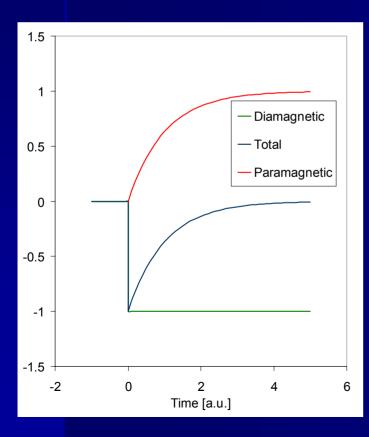
```
Ginzburg-Landau model: n_s(T) \sim 1 - (T/T_c)
```

- BCS close to T_c like GL
- These models fail to describe very slow decrease of $\text{Re}\chi_{ac}(T)$ far below T_c and too fast near T_c . Approximation with temperature dependent superfluid density gives unrealistic parameters (exponents).
- Nonvanishing absorption $(Im\chi_{ac}(T))$ for $H_{ac} \rightarrow 0$ shows that the transition is first-order.
- Phase transition in vortex matter? The temperature of vortex lattice melting should depend on H_{dc} (vortex density) and frequency of H_{ac}. But no dependence is observed.
- S-shaped $\text{Re}\chi_{ac}(T)$ and 10 mK narrow line on $\text{Im}\chi_{ac}(T)$? This cannot be due to a fluctuations above T_c .

- What is wrong?
- Data fit simple function

Re
$$\chi(T) = a + b \arctan \frac{2(T - T_c)}{\Delta T_c}$$

This dependence is known as **Breit-Wigner resonance**:


Analogy with resonances in optics, here for particle waves

Breit-Wigner resonance in solids

- Isolated resonance level
- Electrons in Fabry-Perrot resonator with R->1
- Coupled channel resonance
- Two near continua
- Auto-ionization
- Hybridization (n-merization)

Not super-fluid density but electron scattering

- Total current = paramagnetic + diamagnetic [BCS]
- Paramagnetic (*T* dependent) = quasi-particle current = counter-flow
- Diamagnetic (*T* independent) = all conduction electrons = solid state single wave function
- Lihear response of current density to vector potential = ideal diamagnetism
- There has to be correlated electrons

$$\mathbf{j} = \frac{en}{m} \left(\hbar \mathbf{k} - e\mathbf{A} \right)$$

$$\mathbf{K} = \sum_{\mathbf{k}} \mathbf{k} c_{\mathbf{k}-\mathbf{K}}^* c_{\mathbf{k}}$$

$$\mathbf{J} = \frac{en}{m} (\hbar \mathbf{K} - e\mathbf{A}) = i \boldsymbol{\sigma} \boldsymbol{\omega} \mathbf{A}$$

$$\mathbf{M} = \frac{en}{m} \left(\hbar \oint_{\Gamma} \mathbf{K} d\mathbf{l} - e\Phi \right) = i\omega\sigma\Phi$$

$$\mathbf{M} = \frac{en_0}{m} \left(\hbar \oint_{\Gamma} \nabla \phi d\mathbf{l} - e\Phi \right)$$

$$\Psi = \Psi_0 \exp(i\phi)$$

- Temperature dependent paramagnetic (drift, counter-flow) current
- Temperature independent diamagnetic current of all conduction electrons of both spin direction, which has the same value both in the normal and superconducting states

$$\mathbf{j}(T) = \frac{ne}{m} \hbar \mathbf{K}(T)$$
$$\mathbf{j} = -\frac{ne^2}{m} \mathbf{A}$$

Magnetization:

$$\mathbf{M}(T) = \frac{ne}{m} \left[\hbar \oint_{\Gamma} \mathbf{K}(T) \cdot d\mathbf{I} - e\Phi \right]$$

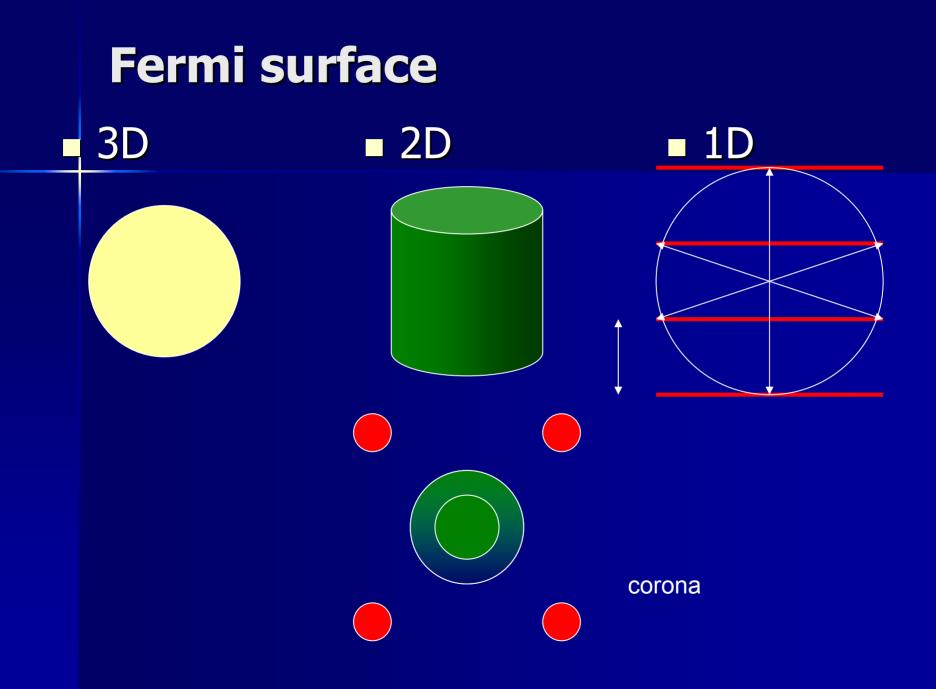
K is the complex wave-vector – temperature dependent Real part - elastic electron scattering (non-Ohmic) Imaginary part - inelastic electron scattering (Ohmic)

Electron scattering

BCS:

•Copper pairs

•low angle forward isotropic scattering from longitudinal phonons


$$|\mathbf{k}\uparrow\rangle + |-\mathbf{k}\downarrow\rangle = |\mathbf{K}\uparrow\downarrow\rangle, \Delta K\xi \ge 1/2$$

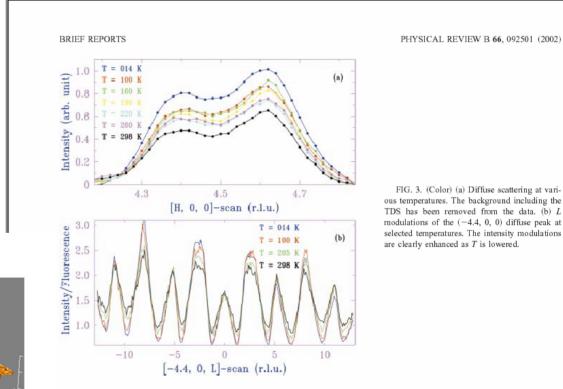
$$egin{aligned} \mathbf{k}_{\uparrow} &
ightarrow \mathbf{k}_{\uparrow} + \mathbf{q} \ -\mathbf{k}_{\downarrow} &
ightarrow -\mathbf{k}_{\downarrow} - \mathbf{q} \end{aligned}$$

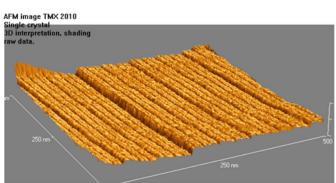
Back-scattering from (super)lattice In 1970s: Gorkov – A15 – have superstructure Scalapino – analogy of Peierls instability in 1D with BCS Low dimensional systems $\mathbf{k} \rightarrow \mathbf{k} - \mathbf{G} = -\mathbf{k}$ $-\mathbf{k} \rightarrow -\mathbf{k} + \mathbf{G} = \mathbf{k}$

We need further information on lattice and Fermi level – diffraction, ARPES, STM, ..

Crystall lattice modulation in YBCO

x-ray diffraction (synchrotron radiation), neutrons


Islam Z. et al., PRB 66 (2002) 92501


Modulated lattice

Super-structures

Described by Bessel functions

Analogy with irradiated JJ

and appears to saturate in that phase. The inset shows the intensity after subtracting the 220–260-K value. By scanning along the **c*** axis in reciprocal space through

ARPES on Bi2223

Sato T. et al., PRL 89 (2002) 67005

BCS gap is temperature dependent $\Delta(T)$

Pseudogap width is temperature independent (one needs invoke real space gap). There are states within the gap even at 0 K and gap fills with increasing temperature

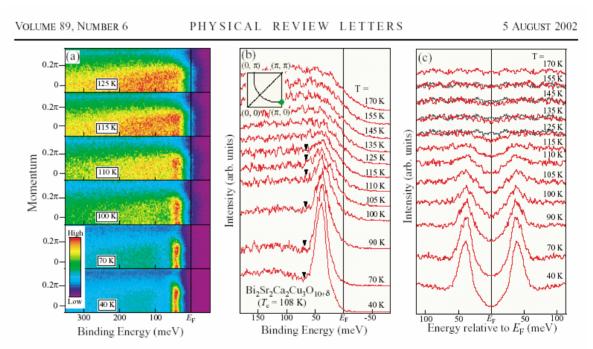


FIG. 3 (color). (a) Temperature dependence of ARPES intensity along $(\pi, 0)$ - (π, π) cut in Bi2223. Vertical axis corresponds to the momentum along $(\pi, 0)$ - (π, π) cut while the abscissa shows the binding energy relative to E_F . Intensity is normalized to the peak maximum at each temperature. (b) Temperature dependence of ARPES spectra of Bi2223 at $(\pi, 0)$ - (π, π) crossing. Intensity of spectra is normalized to the area under the curve. The energy position of spectral break is indicated by arrows. (c) Symmetrized ARPES spectra of Bi2223 at $(\pi, 0)$ - (π, π) crossing. The 170-K spectrum (black line) is superimposed on each spectrum for comparison.

[Fig. 3(b)], where a spectral break (indicated by triangles)

In Fig. 4, we show key superconducting- and pseudogap

ARPES on Bi2212 – Fermi surface

Bogdanov et al., PRL 89 (2002) 167002

1D and 2D Fermi surface

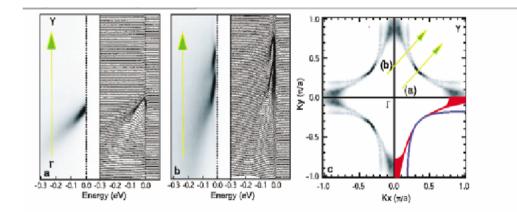


FIG. 1 (color). Panel (a) of this figure shows raw ARPES data along the Γ -Y scan. In panel (b), we plot data for the parallel cut 10° off the Γ -Y direction. In panel (c), an eightfold symmetrized map of the spectral intensity at 12 meV binding energy in superconducting Bi2212 is presented. This map is representative of the Fermi surface situation in Bi2212. The lower right quadrant of the Brillouin zone in panel (c) identifies the bonding band Fermi surface (blue) and the antibonding band Fermi surface (red).

1 of 1 g - ...

STM on Bi:2201 – Pseudogap and chains

Kugler M. et al., PRL 86 (2001) 4911

Horizontal, vertical and diagonal stripes (chains)

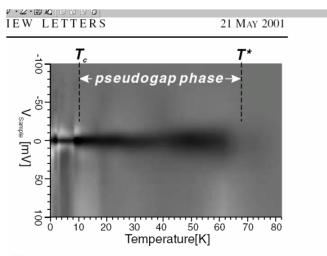


FIG. 4. Interpolated top-view representation of the spectra shown in Fig. 3. The grey scale corresponds to the normalized differential tunneling conductance.

FIG. 1. (a) dI/dV spectra obtained at 275 mK at different locations on *in situ* cleaved Bi2201 ($T_c = 10$ K). In the main panel the spectra are shifted vertically by 0.2 G Ω^{-1} for clarity. In the inset they are superposed and normalized. The peaks are at $\pm \Delta_p = 12$ meV. (b) 10×10 nm² constant current image ($R_t = 1.5$ G Ω , raw data) showing atomic resolution and the 26 Å periodic superstructure along the *b* axis.

Conclusions

- High resolution flux measurements &X-ray&ARPES&STM
- Temperature dependent scattering (el, inel)
- Resonance backscattering
- Real space gap pseudo-gap
- Low dimensional system
- Ordering/modulation? spin, charge, orbital

Future directions

- 3x magnetometer with single vortex resolution
- Study of low dimensional system
- Resolution $\delta k \sim 10^{-6} k_F$, $\delta E \sim 10^{-6} E_F$ (ARPES has 1 meV)

! Call for materials where $2k_{F} \sim G$ (structural transitions) high-quality single crystals and epitaxial films

! New field and method – theory needed