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Cosmic problems

Theory with some experiment:

Outcomes of phase transitions (QCD, electroweak,
GUTs, ...)

Defect formation
Anomalous production of baryon number

Theory with no experiment:

Quantum processes in the presence of horizons
Generation of inflationary fluctuations (de Sitter
horizon)
Hawking radiation (Schwarzschild horizon)

Novel field theoretic phenomena e.g. duality
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Underlying philosophy

Fundamental processes that are common to
cosmology/particle physics and condensed matter can be
tested in the lab.

The state of the system (e.g. specrum of particles,
cosmological expansion rate) cannot be justified based on
laboratory experiment.

Ambiguities when fundamental processes cannot be
distinguished from the state of the system (e.g. cosmological
constant).
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Dumbholes

Basic idea: Waterfall Unruh, 1981

subsonic flow

supersonic
  flow

sonic horizon
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Fluid flow

Navier-Stokes equations:

∇× v = 0 ,
∂ρ

∂t
+ ∇ · (ρv) = 0

∂v

∂t
+ v · ∇v = −1

ρ
∇p −∇Φ

Fluctuations (“sound”): ρ = ρ0 + δρ, v = v0 + ∇φ

Result:

∇µ∇µφ =
1√−g

∂µ(
√
−ggµν∂νφ) = 0
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The metric

Fluid flow gµν given by:

ds2 = (c2

s − v2

0)dt2 + 2v0dtdr − dr2 − r2dΩ2

Painlevé-Gullstrand-Lemaître form of black hole metric†.

Horizon at v0 = cs. Sound cannot propagate upstream from
horizon.

“Dumbhole” — a (smart) hole that cannot “speak”

——————————–
† Assuming spherically symmetric, stationary, convergent, background flow.
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Hawking radiation

Quantum Field Theory around dumbhole leads to “Hawking
sound” just as QED around a black hole gives Hawking light.

Hawking temperature:

TH =
1

2π

∂v0

∂r

∣

∣

∣

∣

hor

= (3 × 10−7 K)

[

cs

300m/s

] [

1mm

R

]

where R = horizon size
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Practical matters

300 m/s in 1 mm ∼ 107g !

Lots of difficulties:
Container walls. Instabilities. Shocks. Extremely low
Hawking temperature.

He4 waterfall:
Roughness on walls ⇒ flow instabilities such as rotons,
vortices prior to horizon formation Jacobson; Volovik

Generally, instabilities are very hard to avoid unless the
sound speed is very low, in which case the Hawking
temperature is also very low.
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A generalization

Visser, 1998

TsH =

(

~

2πkB

)

∂

∂r
(cs − v)

∣

∣

∣

∣

hor

where cs = cs(t,x).

Instead of manipulating v, manipulate cs.
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Helium-3

He3: Jacobson and Volovik

Consider moving texture or domain wall. Fermionic
quasiparticle velocity varies within the wall.

Estimate: TsH = 5µK.

At present reliable thermometry in He3 only goes down to
100µK.
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Propagating phase boundaries

gr-qc/0312069

Phase 1 Phase 2
v

Material is at rest with respect to container.

c1 > v > c2

In rest frame of phase boundary, this is just like the Unruh
setup.

Phase boundary is a sonic horizon.
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First order phase transitions

V(   )φ

φ

Phase 1

Phase 2
ε

Supercooled system. Decay proceeds by bubble nucleation.
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No container walls in 3d

Phase 2

Phase 1
v
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Hawking temperature

TsH = 0.04 K
(

δcs

300 m/s

)

(

100Å
ξ

)

ξ is the thickness of the phase boundary.

v determines location at which gradient of cs is evaluated.

We will assume that TsH is (roughly) independent of v as
long as it satisfies c1 > v > c2.

Can this setup be realized experimentally?
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B → A transition in 3He

“Sound” quanta = fermionic quasiparticles

cA⊥ = 3 cm/s. cB = 55 m/s or larger.

vBA (i.e. growing bubble of B in A) observed to be as high as
67 cm/s. Buchanan et. al., 1986

However, since cB > cA⊥, we need vAB > 3 cm/s.

vAB ∼ several cm/s when driven by magnetic fields.
Bartkowiak et. al., 2000
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Issues with the B-phase

Quasiparticles do not propagate on a Lorentzian metric in
the B-phase.

Therefore the metric analogy breaks down.

However the black hole analogy need not break down!

There is still a sonic horizon in which quasiparticles can fall
in but from which they can’t emerge†. Hawking radiation
should still be emitted!

†Even a static AB interface is a reflecting mirror for quasiparticles impinging from the A phase

side. But this is only an energy barrier preventing escape (not a “velocity barrier”) and does not

lead to Hawking radiation.
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Hawking radiation without a metric

f fB phase A phase

v

Vacuum fluctuations in the B phase produce an f f̄ pair, say
with f having positive energy and f̄ having negative energy.
f̄ falls into the dumbhole, never to be seen again. f

escapes, and forms the Hawking radiation.

Can this radiation be seen?
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Experimental setup

from Volovik’s book

344 CASIMIR EFFECT AND VACUUM ENERGY

interface

(perfect mirror)

H 

H
A

B
(T

=
0
)

A phase

(true vacuum)

B phase

(true vacuum)

z0

z 

Fig. 29.1. Interface between two vacua stabilized by the vacuum pressure in-
duced by external magnetic field. Interface is at z = z0, where H(z0) = HAB .
It separates true vacuum of 3He-A, from the true vacuum of 3He-B.

it seperates the vacuum states with different broken symmetry, but also between
vacua of different universality classes (Fig. 29.2).

The vacua in 3He-A and 3He-B have different broken symmetries, neither of
them is the subgroup of the other, [400] (Sec. 7.3). Thus the phase transition
between the two superfluids is of first order. The interface between the two vacua
is stable and is stationary if the two phases have the same vacuum energy ε̃ (or
the same free energy if T 6= 0). At T = 0 the difference between energies of 3He-A
and 3He-B is regulated by the magnetic field. If the liquids are are isolated from
environment, the pressure in the true equilibrium vacuum state (at T = 0) must
be zero and the chemical potential must be constant throughout the system

0 = P = µnB − εB(nB) +
1

2
χBH2(z) = µnA − εA(nA) +

1

2
χAH2(z) . (29.6)

Here we introduced interaction of nuclear spins of 3He atoms with external mag-
netic field H . Due to different spin structure of Cooper pairs in 3He-A and 3He-B,
the spin susceptibilities of the two liquids are different, and this allows to sta-
bilize the interface in applied gradient of magnetic field even at T = 0. The
position z0 of the interface, which follows from Eq.(29.6), is determined by the
profile of magnetic field H(z) (see Fig. 29.1), and can be regulated by changing
the magnitude H of magnetic field. Reducing H one changes the vacuum energy
of 3He-B and 3He-A in a different way, so that the interface is shifted upward.

Note that the vacuum energy density ε̃ = −P is zero in both vacua. The
initial difference in the energies (and pressures) of the liquid is compensated by
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Oscillations of the He-3 AB interface

ν = 1 Hz ⇒ v ∼ 1 cm/s Bartkowiak et. al., 2000

Dissipation grows anomalously at ν ≈ 3 Hz (upper curves).
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Interface motion at low frequencies

Equation of motion:

−k(x − x0(t)) − γ
dx

dt
= 0

where x0(t) = a sin(ωt) is the position if γ = 0. Then,

v(t) = v0 cos(ωt − φ) + O(e−κt)

κ =
k

γ
, v0 =

aκω√
κ2 + ω2

, tan φ =
ω

κ

Therefore v0 ∝ ω for ω << κ and v0 is independent of ω for
ω >> κ. P = γv2 (force×velocity) fits ν < 1 Hz data for choice
of γ (κ?).
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Interface motion at high driving frequencies

At ν � 1 Hz:

Interface probably still oscillates at frequency ∼ ω.

Data indicates that v departs from the low frequency
behavior. Assume that the amplitude of v grows with ω.

For illustrative purposes take

v = αω cos(ωt − φ̃)

where the amplitude α is an ω independent parameter in the
frequency range of interest.

The exact form of v is not crucial for us. Even the power of ω

in the amplitude could be different from 1.
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Dissipation due to Hawking radiation

Hawking radiation occurs only when v = ż > cA.

Assume thermal Hawking radiation at TsH .

For j “light” species of radiation, this gives†:

PH = jσsT
4

sHA

(

δt

τ

)

= jσsT
4

sHA
1

π
cos−1

( cA

2παν

)

Write this as

PH =
P0

π
cos−1

(ν∗
ν

)

——————————–
†

TsH ≈ 3mK > ∆B ≈ 1.7mK
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Comparison with data

P0 ≈ 116

(

j

2

)(

d

4.3mm

)2(

δcs

60m/s

)2
(

100Å
ξ

)4

pW

where d is the cell diameter (4.3 mm in the experiment). This
is in the right range if ξ ∼ 300 Å.

The ν dependence (cos−1(ν∗/ν)) qualitatively agrees with
data if ν∗ is treated as a free parameter.

How about the value of the critical frequency ν∗?
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Comparison contd.

ν∗ =
cA

2πα

If α = BAC/∇B0|interface and the applied magnetic field is:

B(t, z) = B0(z) + BAC sin(2πνt)

then,
∇B0 T/m δB mT ν∗ Hz

2.00 0.643 14.8

1.00 0.643 7.4

0.53 0.643 3.9

1.00 0.214 22.2

But no reason to adopt the low frequency α = BAC/∇B0.
Explanation can only work if α is independent of ∇B0.
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Future investigations

Theory (with apologies):

Interface motion at high frequencies.

Derive Hawking radiation for AB interface (no metric).

Determine other effects e.g. l−texture, accelerating
boundary.

Experiment (with even greater apologies):

Setup constant, not oscillating, v.

Correlate power dissipated and v.

Eliminate l−texture e.g. by inserting coaxial surface in
container.

Spectrum.
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Conclusions

Can condensed matter experiment successfully study
quantum field theory in curved spacetime?

Has condensed matter experiment already seen Hawking
radiation? (If not, why not? After all: P0 ∼ 1 pW.)

Will condensed matter experiment shed light on other
cosmic problems?
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