

NMR on ³He using DC SQUIDS

In collaboration with

Dietmar Drung and Thomas Schürig Physikalisch-Technische Bundesanstalt, Berlin

Supported by EPSRC GR/M51291, Royal Society, Oxford Instruments

Earlier involvement: Helen Dyball. Megan Digby, Richard Reed, Junyun Li Contributions by: Jan Nyéki, Vladimir Maidanov,

VLTI III, Lammi, Jan04 Vladimir Dmitriev, Jeevak Parpia

Motivation

Detect precessing magnetization with a SQUID

Outline

- 1. NMR and the use of SQUIDs some history
- 2. Tuned and untuned input circuits
- 3. Operation of broadband SQUID amplifiers
- 4. Noise and sensitivity
- 5. Applications
- 6. Future prospects

Applications

1. **Unconventional superfluidity in submicron 3He slabs** (Measurement of the superfluid transition in a single slab resting on a polished silver surface)

2. Ferromagnetism of 2D solid 3He

(Studies of 3He adsorbed on graphite to low magnetic fields. Two dimensional frustrated magnetic system)

3. Knight shift in superconducting UPt3 (To help determine equilibrium order parameter)

4. NMR in ultralow fields on room temperature samples

Detection of NMR using SQUID

1. Measure $M_{_Z}$

Detection of NMR using SQUID

1. Measure $M_{_Z}$

Typical bandwidth $\:$ 1/ \mathcal{T}_1

2. Measure \mathcal{M}_γ (free precession)

Typical bandwidth $\,\omega_{\rm 0}^{}$

Free induction decay NMR lineshape

Free induction decay NMR lineshape

DC SQUID converts magnetic flux to voltage

Modes of operation: 1. Small signal amplifier

- small dynamic range
- poor gain stability

2. Linear amplifier : Flux locked loop mode

- wide dynamic range
- good gain stability
- reduced b andwidth

Detection of M_z

applications include: metals, 3He drug detection (eg. 14N and 35Cl in cocaine)

Measure M_z : sweep frequency of transverse rf field slowly through resonance

1. How do we couple NMR signal into SQUID?

2. How do we read-out voltage across SQUID? (operation of flux locked loop)

Broadband: superconducting flux transformer input circuit

Detect flux : signal ∝ magnetisation ∝ frequency

Tuned: series tuned input circuit

Freeman et al. App. Phys. Lett. 46 (1986) 300

Detect rate of change of flux : signal \propto (frequency)² \times \bm{Q}

Typical NMR coil set

Orthogonal transmitter and receiver coils

Apply tipping pulse using saddle shaped transmitter coil

Receiver coil (saddle or solenoid) is mounted orthogonally to reduce cross coupling

1. Polarise by B_1 (= 6 G) 2. Turn off B_1 3. Spins precess around B_0 (= 0.19 or 0.32 G)

> B_{0} B_i M

Ultralow frequency NMR on 3He gas at 4.2K

using commercial (Quantum Design) SQUID with 50 kHz bandwidth

Tuned spectrometer: optimising noise

Johnson noise peak as a function of sample coil temperature

Noise temperature $\mathcal{T}_{\textsf{N}}.$ At $\mathcal{T}_{\mathcal{N}}$ \Rightarrow $\,$ SQUID amplifier noise = Johnson noise from input circuit

Optimising noise temperature

$$
\Rightarrow (T_{N})_{opt} = 6.0 \text{ mK}
$$

More completely:
$$
T_N = \sqrt{K} \frac{(T_N)_{opt}}{2} \left(\frac{1}{x} + x\right)
$$

Conventional flux-locked cryogenic output transformer loop scheme \sim Flux modulation

Fig. 4.3. SQUID readout with flux modulation: (a) $V - \Phi_a$ characteristic and (b) FLL circuit. A square-wave modulation flux Φ_{mod} switches the SQUID periodically between the working points W⁺ and W⁻. Components inside the dashed box are at cryogenic temperature.

Drung and Mück

Flux locked loop

•SQUID output coupled directly to room temperature amplifier

•SQUID characteristic modified by APF

Additional **P**ositive **F**eedback : D Drung et al. App. Phys. Lett. 57 (1990) 406

PTB SQUID

SQUID constructed from 8 parallel loops \Rightarrow combines large area with low inductance J Zimmerman J.App.Phys. **42**, 4483 (1971)

> High field sensitivity (biomagnetic measurements) \Rightarrow "flip-chip" input coil

Noise and Bandwidth

$$
\left\langle \phi_N^2 \right\rangle_{effective} = \left\langle \phi_N^2 \right\rangle + \frac{\left\langle V_N^2 \right\rangle}{V_\phi^2}
$$

$$
\langle \phi_N^2 \rangle^{1/2} = 1.1 \text{ } \mu \phi_0 / \sqrt{Hz}
$$

$$
\langle V_N^2 \rangle^{1/2} = 0.45 \text{ nV} / \sqrt{Hz}
$$

$$
V_{\phi} = 415 \text{ } \mu \text{V} / \phi_0
$$

SQUID noise = amplifier noise

Typical bandwidth = 5 MHz

Estimate of achieved noise temperature from tests to 1.5 K

Some headaches with tuned spectrometers

gain, bandwidth and effective Q depended in an unexpected way on feedback resistor, R_f : Introduce weak feedback directly into input circuit.

Spurious noise source limits noise temperature. Model by an effective resistance at some T_{eff} in input circuit. Study at 4K using a high Q tuned circuit (superconducting coil).

Appears to arise from coupling to APF coil. Removing APF coil, we can achieve $\rm \, \mathcal{T}_N \sim 30 \rm \, mK$ under optimum conditions

cf "coil disease" in conventional NMR **Background resonances**

A coherent background signal due to magnetoacoustic resonances is observed.

Subtracted by taking magnetic field "offtune".

High gain stability achieved by operation in FLL mode is crucial

Assembly of SQUID amplifier probe for test at 4.2K

Fully assembled probe installed in cryostat, through one of three 50mm diameter line of sight access ports

Calculating the NMR signal size

Hoult and Richards, J. Mag. Res., **24**, 71 (1976)

⇓

Estimate minimum number of detectable spins

Minimum number of det ectable spins

Peak signal = peak noise in frequency domain, in a single shot.

$$
N_m = K_N^F \left(\frac{4k_B T_{spin}}{\hbar \omega_0}\right) \left(\frac{4k_B T_{sys}}{\hbar \omega_0}\right)^{1/2} \left(\frac{1}{Q}\right)^{1/2} \left[\frac{\hbar \left(\frac{2K_T}{T_2^*}\right) L_p}{\hbar^2 \gamma^2 \left\langle B_1^2 \right\rangle}\right]^{1/2}
$$

$$
T_{\text{sys}} = T_{\text{coil}} + T_N
$$

Minimum number of det ectable spins

Peak signal = peak noise in frequency domain, in a single shot

$$
N_m = K_N^F \left(\frac{4k_B T_{spin}}{\hbar \omega_0}\right) \left(\frac{4k_B T_{sys}}{\hbar \omega_0}\right)^{1/2} \left(\frac{1}{Q}\right)^{1/2} \left[\frac{\hbar \left(\frac{2K_T}{T_2^*}\right) L_p}{\hbar^2 \gamma^2 \left\langle B_1^2 \right\rangle}\right]^{1/2}
$$

$$
T_{\text{sys}} = T_{\text{coil}} + T_N
$$

Mechanical polishing achieves a measured roughness of [±] **10 nm over 50mm** $\bm{\mathsf{Model}}$ the surface as $\bm{\mathit{h}}$ = $\bm{\mathit{h}}_{\mathit{O}}$ *cos(kx)* , then $\bm{\mathit{h}}_{\mathit{O}}$ = 10 nm and $\bm{\mathit{k}}$ = 4 mm⁻¹

Superfluid 3He films

1. 19 87 Freeman *et al* NMR on ³He in channels

2. 19 90 Crooker *et al*

Metastable films

3. 19 91 Harrison *et al*

'Self emptying beaker'

4. 19 98/99 Davis *et a l*

Third sound

•Freeman et al clearly observed a transition into the A-phase.

•All observed a reduction in $\mathsf{T}_\mathcal{C}$ as a function of film $\mathsf{T}_\mathcal{C}$ thickness

•The equilibrium phase diagram as a function of film thickness has not been mapped out.

Superfluid 3He films

1. 19 87 Freeman *et al* NMR on ³He in channels

2. 19 90 Crooker *et al*

Metastable films

3. 19 91 Harrison *et al*

'Self emptying beaker'

4. 19 98/99 Davis *et a l*

Third sound

•Freeman et al clearly observed a transition into the A-phase.

•All observed a reduction in $\mathsf{T}_\mathcal{C}$ as a function of film $\mathsf{T}_\mathcal{C}$ thickness

•The equilibrium phase diagram as a function of film thickness has not been mapped out.

NMR \Rightarrow "fingerprint" to identify superfluid ground state, as a function of film thickness

• observe a superfluid transition \Rightarrow film cools through 1 cm² surface • frequency shift is positive

Unconventional (p-wave) superfluidity in thin slabs

 10^{-1}

 10^{-}

 10^{-2}

Temperature (K)

 10^{-}

3.3

 10

Suppression of components of order parameter at a wall

Ambegaokar, deGennes, Rainer (1974)

$$
\xi(T) = 0.649 \xi_0 \left(1 - \frac{T}{T_c} \right)^{1/2}
$$

This orientation of l and d maximises dipole energy ⇒ **negative frequency shift**

Clash of dimensionalities

Clash of dimensionalities

Quantum size effects

Broadband SQUID NMR: 2D ferromagnetic 3He on graphite

In an applied field of 1.54 mT, by simply resetting the frequency synthesiser, the 13C line from the graphite substrate can clearly be observed. Dipolar broadening of the 13C line is small due to low isotopic abundance. **Useful for thermometry at T < 1 mK.**

Magnetization approaches saturation at lowest T

Measured magnetization ranges over a factor approaching 10 5

Cell details

Incorporating inner "overlapping niobium shield" to eliminate eddy current transient from magnet former

Large frequency shifts due to dipolar field

Spin waves in a 2D frustrated ferromagnet

Broadband SQUID NMR on UPt 3

Objective: determination of pairing state

Surface quality is an issue

Future directions

New p-wave order parameters in confined geometries, for example thin slab

Ultralow field NMR on biological systems (porous media) using broadband spectrometers

Improvements in sensitivity

