

NMR on ³He using DC SQUIDS

ULTI III, Lammi, Jan04

Andrew Casey Antonio Corcoles, Rainer Körber Roch Schanen, Dmitri Shvarts Chris Lusher, Brian Cowan, John Saunders

In collaboration with

Dietmar Drung and Thomas Schürig Physikalisch-Technische Bundesanstalt, Berlin

Supported by EPSRC GR/M51291, Royal Society, Oxford Instruments

Earlier involvement: Helen Dyball. Megan Digby, Richard Reed, Junyun Li Contributions by: Jan Nyéki, Vladimir Maidanov, Vladimir Dmitriev, Jeevak Parpia

Motivation

Detect precessing magnetization with a SQUID

Outline

- 1. NMR and the use of SQUIDs some history
- 2. Tuned and untuned input circuits
- 3. Operation of broadband SQUID amplifiers
- 4. Noise and sensitivity
- 5. Applications
- 6. Future prospects

Applications

1. Unconventional superfluidity in submicron ³He slabs (Measurement of the superfluid transition in a single slab resting on a polished silver surface)

2. Ferromagnetism of 2D solid ³He

(Studies of ³He adsorbed on graphite to low magnetic fields. Two dimensional frustrated magnetic system)

3. Knight shift in superconducting UPt_3 (To help determine equilibrium order parameter)

4. NMR in ultralow fields on room temperature samples

Detection of NMR using SQUID

1. Measure M_z

2. Measure M_y (free precession)

Detection of NMR using SQUID

1. Measure M_z

Typical bandwidth $1/T_1$

2. Measure M_y (free precession)

Typical bandwidth ω_0

Free induction decay

NMR lineshape

Free induction decay

NMR lineshape

DC SQUID converts magnetic flux to voltage

Modes of operation: 1. Small signal amplifier

- small dynamic range
- poor gain stability

2. Linear amplifier : Flux locked loop mode

- wide dynamic range
- good gain stability
- reduced bandwidth

Detection of M_z

applications include: metals, ³He drug detection (eg. ¹⁴N and ³⁵Cl in cocaine)

12.0

f-kHz

11.8

12.2

1. How do we couple NMR signal into SQUID?

2. How do we read-out voltage across SQUID? (operation of flux locked loop)

Broadband: superconducting flux transformer input circuit

Detect flux : signal ∞ magnetisation ∞ frequency

Tuned: series tuned input circuit

Freeman et al. App. Phys. Lett. 46 (1986) 300

Detect rate of change of flux : signal ∞ (frequency)² × Q

Typical NMR coil set

Orthogonal transmitter and receiver coils

Apply tipping pulse using saddle shaped transmitter coil

Receiver coil (saddle or solenoid) is mounted orthogonally to reduce cross coupling 1. Polarise by $B_1 (= 6 G)$ 2. Turn off B_1 3. Spins precess around B_0 (= 0.19 or 0.32 G)

B.

Bo

Ultralow frequency NMR on ³He gas at 4.2K

using commercial (Quantum Design) SQUID with 50 kHz bandwidth

Tuned spectrometer: optimising noise

Johnson noise peak as a function of sample coil temperature

Noise temperature T_N . At $T_N \Rightarrow$ SQUID amplifier noise = Johnson noise from input circuit

Optimising noise temperature

$$\Rightarrow$$
 (T_N) _{opt} = 6.0 mK

More completely:
$$T_N = \sqrt{K} \frac{(T_N)_{opt}}{2} \left(\frac{1}{x} + x\right)$$

Conventional flux-locked loop scheme

Cryogenic output transformer

Flux modulation

Fig. 4.3. SQUID readout with flux modulation: (a) V- Φ_a characteristic and (b) FLL circuit. A square-wave modulation flux Φ_{mod} switches the SQUID periodically between the working points W⁺ and W⁻. Components inside the dashed box are at cryogenic temperature.

Drung and Mück

Flux locked loop

- •SQUID output coupled directly to room temperature amplifier
- •SQUID characteristic modified by APF

Additional Positive Feedback : D Drung et al. App. Phys. Lett. 57 (1990) 406

PTB SQUID

SQUID constructed from 8 parallel loops \Rightarrow combines large area with low inductance J.App.Phys. 42, 4483 (1971)

High field sensitivity (biomagnetic measurements) \Rightarrow "flip-chip" input coil

Noise and Bandwidth

$$\left\langle \phi_{N}^{2} \right\rangle_{effective} = \left\langle \phi_{N}^{2} \right\rangle + \frac{\left\langle V_{N}^{2} \right\rangle}{V_{\phi}^{2}}$$

$$\left\langle \phi_N^2 \right\rangle^{1/2} = 1.1 \ \mu \phi_0 / \sqrt{Hz}$$

 $\left\langle V_N^2 \right\rangle^{1/2} = 0.45 \ nV / \sqrt{Hz}$
 $V_{\phi} = 415 \ \mu V / \phi_0$

SQUID noise = amplifier noise

Typical bandwidth = 5 MHz

Estimate of achieved noise temperature from tests to 1.5 K

Some headaches with tuned spectrometers

gain, bandwidth and effective Q depended in an unexpected way on feedback resistor, R_f : Introduce weak feedback directly into input circuit.

Spurious noise source limits noise temperature. Model by an effective resistance at some T_{eff} in input circuit. Study at 4K using a high Q tuned circuit (superconducting coil).

Appears to arise from coupling to APF coil. Removing APF coil, we can achieve $T_N \sim 30$ mK under optimum conditions

Background resonances

cf "coil disease" in conventional NMR

A coherent background signal due to magnetoacoustic resonances is observed.

Subtracted by taking magnetic field "offtune".

High gain stability achieved by operation in FLL mode is crucial

Assembly of SQUID amplifier probe for test at 4.2K

Fully assembled probe installed in cryostat, through one of three 50mm diameter line of sight access ports

Calculating the NMR signal size

Hoult and Richards, *J. Mag. Res.*, **24**, 71 (1976)

↓

Estimate minimum number of detectable spins

Minimum number of detectable spins

Peak signal = peak noise in frequency domain, in a single shot.

$$N_{m} = K_{N}^{F} \left(\frac{4k_{B}T_{spin}}{\hbar\omega_{0}} \right) \left(\frac{4k_{B}T_{sys}}{\hbar\omega_{0}} \right)^{1/2} \left(\frac{1}{Q} \right)^{1/2} \left[\frac{\hbar \left(\frac{2K_{T}}{T_{2}^{*}} \right) L_{p}}{\hbar^{2}\gamma^{2} \left\langle B_{1}^{2} \right\rangle} \right]^{1/2}$$
$$T_{sys} = T_{coil} + T_{N}$$

Minimum number of detectable spins

Peak signal = peak noise in frequency domain, in a single shot

1 / 0

$$N_{m} = K_{N}^{F} \left(\frac{4k_{B}T_{spin}}{\hbar\omega_{0}}\right) \left(\frac{4k_{B}T_{sys}}{\hbar\omega_{0}}\right)^{1/2} \left(\frac{1}{Q}\right)^{1/2} \left[\frac{\hbar \left(\frac{2K_{T}}{T_{2}^{*}}\right)L_{p}}{\hbar^{2}\gamma^{2}\left\langle B_{1}^{2}\right\rangle}\right]^{1/2}$$
$$T_{sys} = T_{coil} + T_{N}$$

Eg 100 nm film, spin density 10^{-4} x bulk

Mechanical polishing achieves a measured roughness of \pm 10 nm over 50mm Model the surface as $h = h_0 \cos(kx)$, then $h_0 = 10$ nm and k = 4 mm⁻¹

Superfluid ³He films

1. <u>1987 Freeman *et al*</u> NMR on ³He in channels

2. <u>1990 Crooker et al</u>

Metastable films

3. <u>1991 Harrison *et al*</u>

'Selfemptying beaker'

4. <u>1998/99</u> <u>Davis</u> <u>et</u> <u>al</u>

Third sound

•Freeman et al clearly observed a transition into the A-phase.

•All observed a reduction in T_c as a function of film thickness

•The equilibrium phase diagram as a function of film thickness has not been mapped out.

Superfluid ³He films

1. <u>1987 Freeman *et al*</u> NMR on ³He in channels

2. <u>1990</u> <u>Crooker</u> <u>et</u> <u>al</u>

Metastable films

3. <u>1991 Harrison *et al*</u>

'Self emptying beaker'

4. <u>1998/99</u> <u>Davis</u> <u>et</u> <u>al</u>

Third sound

•Freeman et al clearly observed a transition into the A-phase.

•All observed a reduction in T_c as a function of film thickness

•The equilibrium phase diagram as a function of film thickness has not been mapped out.

NMR \Rightarrow "fingerprint" to identify superfluid ground state, as a function of film thickness

First annealing

- observe a superfluid transition \Rightarrow film cools through 1 cm² surface
- frequency shift is positive

Unconventional (p-wave) superfluidity in thin slabs

Superfluid phase diagram of thin film

Temperature (K)

Suppression of components of order parameter at a wall

Ambegaokar, deGennes, Rainer (1974)

$$\xi(T) = 0.649 \xi_0 \left(1 - \frac{T}{T_c} \right)^{1/2}$$

This orientation of / and d maximises dipole energy \Rightarrow negative frequency shift

 \Rightarrow positive frequency shift

Brusov and Popov (1981)

Stein and Cross (1979)

Tešanović and Valls, Phys. Rev. B31, 1374 (1985)

Clash of dimensionalities

Clash of dimensionalities

Quantum size effects

Broadband SQUID NMR: 2D ferromagnetic ³He on graphite

In an applied field of 1.54 mT, by simply resetting the frequency synthesiser, the ¹³C line from the graphite substrate can clearly be observed. Dipolar broadening of the ¹³C line is small due to low isotopic abundance. Useful for thermometry at T < 1 mK.

Magnetization approaches saturation at lowest T

Measured magnetization ranges over a factor approaching 10⁵

Cell details

Incorporating inner "overlapping niobium shield" to eliminate eddy current transient from magnet former

Large frequency shifts due to dipolar field

Spin waves in a 2D frustrated ferromagnet

Broadband SQUID NMR on UPt₃

Objective: determination of pairing state

Future directions

New p-wave order parameters in confined geometries, for example thin slab

Ultralow field NMR on biological systems (porous media) using broadband spectrometers

Improvements in sensitivity

