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Outline

• Overall aim:    to give a brief overview of the subject,  seeing how the 
various aspects fit together.   Serves as introduction to later papers.

• Introductory comments about classical turbulence.

• Quasi-classical,  full-developed,  turbulence in a superfluid,  especially 
4He.

• Dissipation in superfluid turbulence.

• Turbulence on thermal counterflow.

• The effect of a very viscous normal fluid:  3He-B.

• The nucleation of superfluid turbulence.



Classical turbulence

• Classical flow is described by the Navier-Stokes equation:
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• Suppose that flow is characterized by a single 
characteristic velocity U and a single characteristic length L.
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LU• Re = Reynolds no.

• Re<<1:  stable laminar flow

• Re>>1:  laminar flow unstable → turbulence.  For 
very large Re we get fully-developed turbulence. 

• Turbulence involves rotational motion.  We often think of it loosely in terms of 
a superposition of eddies. Here we consider mostly fully-developed turbulence.



Inertial cascades in classical turbulence

• Suppose initially the flow produces large eddies,  of size R;  characteristic
velocity U,  with large Reynolds number . νRUR =Re

• On scale R the viscous term can be neglected.  The non-
linear inertial term causes energy to flow into other,  
especially smaller but neighbouring,  length scales,  with a 
characteristic time                 ,  the “turnover time”.  URR =τ

• This process continues, producing smaller and smaller 
eddies,  characterized by sizes r and velocities     .  Each 
size of eddy has associated with it a scale-dependent  
Reynolds number                          and                 .  As long            
as there is no significant dissipation we have an inertial 
range cascade (Richardson cascade).
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• What do we mean by significant dissipation?  The time taken 
for viscosity to destroy an eddy of size r is given by                  .  
Dissipation will have a significant effect only if ;  i.e. if                  
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• The inertial-range cascade will be terminated at ,  where  drr = 1Re =rd



The Kolmogorov spectrum (homogeneous turbulence)

• There is a flow of energy at a rate ε per unit mass down the cascade. 

• Eddies of size r have energy per unit mass       . 2
rr uE =

• They lose this energy in a time rr ur=τ

ruu rrr
32 == τε• Therefore 

• In a steady-state inertial range ε is independent of r as long as drr >

• Therefore in the inertial range 32322 ruE rr ε==

• This is a rough statement of the Kolmogorov spectrum,  usually written more 
rigorously as ( ) 3532 −= kCkE ε

where            is the turbulent energy per unit mass associated with Fourier 
components of the velocity field in the range dk, and   

( )dkkE
6.1≈C

• The energy ε is ultimately dissipated by viscosity near the length scale    :  dr
2ωνε = where  

2ω is the mean square vorticity.



Turbulence in a superfluid

• Must take account of:  two-fluid behaviour,  at least at high temperatures

rotation of superfluid component possible only through 
presence of quantized vortex lines, 
circulation 34 2  or mhmh=κ

( )[ ] ( )LnLnD κ vvvvf −×′+−××−= κγκγ ˆˆˆ 00mutual friction

( )sLsM vvf −×= κκρ ˆMagnus effect

balance of forces 0=+ MD ff

viscosity of normal fluid very small for 4He
very large for 3He

• Hence ( )[ ] ( )
s

snssnsD vvvvf −×′−−××−= κκρακκκαρ ˆˆˆ

( ) ( )[ ]snsnsL vvvvvv −××′−−×+= κκακα ˆˆˆ If                  sL vv ≈<<′  ,1,αα

 

vortex reconnections



Superfluid turbulent flow due to vortex lines

• Think about homogeneous turbulence,  such as grid turbulence.

• The vortex lines in the superfluid will take the form of a more or less random 
tangle.  Length of line per unit volume = L;  mean vortex spacing = 21−= Ll

• For a completely random tangle,  characteristic velocity on length scale l is

lκ=su

and on larger length scales it is zero.

• Non-zero velocities on larger length scales can be achieved by partial or 
complete polarization of the vortex array.

 
• If there is no mutual friction vortices move 
with local superfluid velocity,  and suitable 
arrays can mimic classical flow on scales 
larger than l.

• The time-evolution of the superfluid 
velocity on scales greater than l is also 
believed to mimic classical flow.



Quasi-classical superfluid turbulence

• This suggests that on scales larger than l,  in the absence of mutual friction,  
superfluid turbulence will be essentially classical.

i.e. there will be an inertial-range cascade,  with energy flowing at rate ε down 
the cascade;  and there will be a Komogorov spectrum

( ) 3532 −= kCkE ε

• There are two ways to avoid mutual friction
• Work at very low temperature,  where 0≈nρ

• Make ns vv =

• Evidence from quasi-classical turbulence in 4He 
above 1K,  when

• Experiments on fully-developed turbulence 
at very low temperatures,  with 3He-B or 4He,  
are planned but not yet carried out.  
Simulations (Tsubota et al) suggest that 
Kolmogorov spectrum is indeed set up.

ns vv =



Quasi-classical turbulence in superfluid 4He above 1K

• Maurer-Tabeling experiment:  counter-rotating blades in helium;  observe 
frequency spectrum of pressure fluctuations.

• Oregon towed-grid experiment:  observe attenuation of second sound;  
measures time-dependence of L.

• Results consistent with following picture

• Both fluids become turbulent,  with same velocity field (Kolmogorov
spectra) on scales greater than l. I.e. this is a case where ns vv =

• Possible only in 4He, in which normal fluid has very low viscosity.

• A numerical accident means that Kolmogorov dissipation length in 
normal fluid ~ l:  therefore matching of velocity fields on scales > l is 
possible.

• We believe that this matching of the velocity fields occurs naturally,  in the 
sense that a Kolmogorov spectrum is set up in both fluids independently.  
Mutual friction serves only to ensure exact matching of the two velocity fields. 
Evidence: classical Kolmogorov spectrum is found even when   1<<ρρn



Dissipation on small length scales

• The existence of an inertial-range Kolmogorov spectrum

( ) 3532 −= kCkE ε

for             implies the existence of dissipation at rate ε for 1<lk 1>lk

• What is the origin of this dissipation?
• The answer for 4He depends on the temperature (discuss 3He later).

• For             dissipation occurs on scale slightly less than l by combination 
of mutual friction and normal-fluid viscosity (4He only).

K1≥T

• For             dissipation is believed to occur at very small length scales 
and is associated with reconnections.  

K1<T
 

• Some energy is lost during reconnections.

• Reconnections can produce very small vortex rings that can 
escape from the turbulent region

• Reconnections leave kinks on the vortex lines



Dissipation on small length scales (cond) 

• These kinks can be viewed as superpositions of harmonic Kelvin waves. The 
Kelvin waves build up in amplitude giving rise through non-linear coupling to a 
Kelvin wave cascade that takes energy to higher and higher wavenumbers.  
Eventually energy is transferred to Kelvin waves of very high wavenumber
where it is dissipated by phonon radiation or by a very weak residual mutual
friction.  (Vinen,  Tsubota and Mitani, Phys.Rev.Letters, 91, 135301 (2003))
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• It can be shown,  partly from experiment and partly from theory,  that the 
energy dissipation can be written 

( )2Lκνε ′=

where             is an effective kinematic viscosity.  Compare  κν ~′ 2ωνε =



Turbulence associated with thermal counterflow in 4He

• So far we have focussed on flows where mutual friction plays a minor role.

• Historically,  the first type of superfluid turbulence to be discovered was one in 
which mutual friction plays an important role.  No classical analogue.  

• In thermal counterflow there is a heat flux                         and no net mass flow  nvSTW ρ=
0=+ nnss vv ρρ

• Focus on simplest case: everything spatially homogeneous.

• The two fluids are forced to move with different average velocities.  Any 
turbulence in the superfluid component must then be severely affected by 
mutual friction.  Does mutual friction kill the turbulence? No, it can actually 
serve to maintain it.

• To understand this, consider the behaviour of a vortex ring placed normal to 
.snns vvv −=

nsv

The mutual friction will cause the ring to 
expand,  thus generating extra vortex line
(the ring must be sufficiently large for a given 
counterflow velocity).

Neglect       in the rest of this talk. α′



Thermal counterflow (cond.)

• This process,  by itself,  cannot lead to self-sustaining turbulence.  We need 
an additional process:  the vortex reconnection  (Schwarz simulations).

Reconnections in an assembly
of rings can lead to the 
generation of new rings,  some 
of which have the right 
orientation for further 
expansion. Really 3D: oversimplified

• Thus mutual friction plus vortex reconnections can lead to the maintenance of 
superfluid turbulence.  (Strictly speaking there is a balance between generation and 
decay of turbulence,  leading to a steady state,  with constant time-averaged value of L.)

• Note that there need be no cascade.  The turbulence need exist only on a 
scale of order l. 

• There is a single  characteristic turbulent velocity of order        .  Scaling then 
requires that  

lκ

   const.  i.e.      ;  .const 22
nsns vLv === −l

l

κ
as observed



Counterflow turbulence (cond.)

• The Schwarz simulations relate to a flow of the normal fluid that is constrained 
to be spatially uniform.  If this condition is relaxed we may find that the  normal 
fluid flow becomes unstable (Melotte and Barenghi),  leading perhaps to large-
scale turbulence in both fluids.  But this large-scale turbulence is not essential 
to the production of counterflow turbulence in the superfluid component.

• In a channel of finite width (D) there is a 
critical velocity,       , below which the small-
scale counterflow turbulence cannot be 
maintained owing to vortex annihilation at the 
boundaries (Schwarz).  

Cv

• This critical velocity 
increases if the mutual friction 
becomes very large ( )1≥α

• Increase in α changes vortex dynamics →
increasing anisotropy→ decreasing reconnection 
rate?  Need for further study (Tsubota).



Quasi-classical turbulence in 3He-B

• Volovik’s recent work.  Based on the idea that the mutual friction acts 
only on small length scales.  Volovik’s argument relates to a situation 
where the vortex lines are locally completely polarized,  when a course-
grained force of the mutual friction per unit mass can be written as    

• The final case we consider is the possibility of quasi-classical (e.g. grid) 
turbulence in 3He-B. 

• Probably we can have such turbulence at very low temperatures,  where the 
normal fluid is absent.  Dissipation mechanisms may involve Caroli-Matricon states.

• But what happens at higher temperatures where there is a significant fraction 
of normal fluid? Remember that the normal fluid in 3He-B is very viscous,  so 
that turbulence in this component can hardly occur in practical sizes of channel. 

• Then we must consider the effect of mutual friction on scales greater than l. 

( ) [ ]snsD v vωvωωF curl ;0         ˆ ==××= α
Volovik argues that because the mutual friction is proportional to ω, which is 
concentrated at small length scales for a Kolmogorov spectrum, the mutual 
friction itself acts only at small length scales. 



Quasi-classical turbulence in 3He-B (cond)

• Physically (and apart from 
geometrical factors)

[ ] [ ] sLD vLvLF   ακακ == Course-grained 
average velocities

• Therefore the force acts equally on all length scales greater than l.                     
(This idea is used in many applications: eg the temperature gradient in a counterflow heat current;  
the use of second sound as a probe of vortex line density.)

• Given this result,  how is a Kolmogorov spectrum affected by mutual friction?

• Mutual friction causes eddies of size r to be damped out with the time constant
( ) 2111 l−−− ==′ καακτ Ld independent of r

Therefore mutual friction is important if 
rd ττ <′

This condition can be expressed in terms of an effective scale-dependent 
Reynolds number
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Quasi-classical turbulence in 3He-B (cond)

• Thus we find the strange result that          decreases with increasing r ;  i.e.  
large eddies are in effect more strongly damped than small eddies.  

reR ′

• A more detailed analysis yields the following tentative picture.

k
1−= lk

121 −−= lαk123 −= lαk

No turbulence “Kolmogorov” Kelvin-wave 
cascade

No turbulence

Decreasing r



The nucleation of superfluid turbulence

• We have considered only the probable structure of fully-developed steady-
state superfluid turbulence.

• There are interesting questions relating to the nucleation of turbulence in the 
superfluid component.

• How are the vortex lines formed initially? And do different particular forms of 
nucleation always lead to the same fully-developed turbulent state?

• In practical experimental situations we often do not know how nucleation 
occurs.  We can try using computer simulations to guide us,  but this can be 
difficult if we have no idea where to start!

• But interesting and relevant new experiments are starting to appear:  e.g.

Work in Helsinki on the nucleation of “turbulent spin-up” in 3He-B  
[introduction of an effective Reynolds number           or      ]α1 ( ) αα′−= 1q

Work in Lancaster on nucleation in a moving grid in 4He.



Summary

• We have argued that quite often fully-developed superfluid turbulence has a 
basic structure similar to that of classical turbulence,  with a inertial-range 
cascade feeding energy into small structures where it is dissipated by a variety 
of processes. 

• Superfluid turbulence generated by thermal counterflow is an exception and 
has no classical analogue.  

• In a superfluid like 3He-B,  in which the normal fluid is very viscous,  the effect 
of mutual friction might be rather unexpected. 

• There is still much speculation,  with a need for new experiments and new and 
better theory.

Thank you!


