IN MEMORIAM

Mr. Sulho Virtanen, chief technician to the laboratory, suffered a fatal heart attack on Febr. 15, 1970. Mr. Virtanen showed truly exceptional devotion to his work and could always be counted on in an emergency. His memory will remain fresh in the minds of all those of us who have had the pleasure of working with him.
1. GENERAL INFORMATION

Research in this laboratory, which was established in 1965, is mainly in the field of solid state physics at low and very low temperatures. Technical projects related to cryogenics are also important. Most units of the laboratory are located in the basement floor of the Technical Physics Building on the campus of the Technical University, about 9 kms west of downtown Helsinki.

2. PERSONNEL

O.V. Lounasmaa (Research Professor of the Finnish Academy);
S.T. Stenholm (Acting Professor);
M. Luukkala (Associate Professor);
N.E. Phillips (Visiting Professor, University of California, Berkeley);
G.R. Pickett (D.Phil., research fellow, University of Lancaster);
T.E. Katila (D.Tech., senior research fellow);
Yu.D. Anufriyev (Ph.D., visiting research fellow,
Institute for Physical Problems, Moscow);
P. Reivari (D.Tech., senior research fellow);
Marja Holmström (Lic.Phil., laboratory engineer);
P.E. Gregers-Hansen (Senior graduate student);
M.I. Aalto, T.A. Alvesalo, P.M. Berglund, H.K. Collan,
G.J. Ehnholm, T.L. Ericsson, R.G. Gylling, M.A. Hattunen,
Niinikoski, O.F. Sarlin, J.I. Surakka R.P. Sövik, V.K. Typpi
(graduate students);
P. Buch Lund, M.T. Hirvonen, R.M. Nieminen, K.O. Nores,
M.A. Paalanen, R.R. Salomaa, M.J. Valo, M.C. Veuro (under-
graduate students);
P.R. PIEKKOLA, P.K. Poukka, N.I. Vehviläinen, S.A. Virtanen
(senior technicians);
E.J. Ahola, Hilikka Hänninen, S.I. Kaivola, K.J. Lingman,
E. Mattsson, E.O. Turtiainen (technicians);
1 1/2 secretaries.
Four of the above mentioned graduate students, Ericsson
(University of Uppsala), Gregers-Hansen (University of Copen-
hagen), Ivarsson (Chalmers University of Technology, Gothenburg),
and Sövik (University of Oslo), spent the Academic year 1970-71
in the laboratory with scholarships from the Nordic Cultural
Foundation.
Prof. O.V. Lounasmaa was appointed on June 17, 1970 Re-
search Professor of the Finnish Academy for the five year period
beginning on September 1, 1970.

3. ACADEMIC DEGREES
The laboratory personnel has obtained the following
Academic Degrees during 1970:
Doctor_of_Technology: T.E. Katila, P. Reivari
Diploma_Engineer: T.A. Alvesalo M.A. Hattunen, T.A.
Heikkilä, J.I. Surakka, V.K. Typpi
4. RESEARCH PROJECTS

4.1. Mössbauer experiments (Katila, Hirvonen, Typpi)

This apparatus, utilizing the $^3\text{He}/^4\text{He}$ dilution refrigeration principle, enables sources or absorbers to be cooled to a minimum temperature of 0.03 K. An investigation of rare earth magnetism is currently the main project. Several Tm^{3+} compounds with crystal field singlet ground state have been investigated. Exchange induced ordering of a singlet crystal state was observed in $\text{Tm}_2(\text{SO}_4)\cdot 8\text{H}_2\text{O}$. Gd^{3+} compounds have been used to study the magnetic properties of an S-state ion in isomorphous rare earth compounds. Nuclear polarization is employed for the Mössbauer effect thermometry, hyperfine interactions at the source nuclei, and nuclear transitions. The sign and magnitude of the hyperfine field at ^{57}Co nuclei has been measured e.g. in dilute alloys Co-Pd, Co-Pt and Co-Fe. The ^2E-transitions of ^{169}Er and ^{197}Pt have been studied, using nuclear polarization to determine their mixing ratios. Relaxation of Fe^{3+} spins at low temperatures has been seen e.g. in $\text{K}_2\text{Fe(CN)}_6$. Several experimental problems connected with measuring techniques are also studied.

4.2. ^3He cryostat (Islander)

The specific heat C_p of Gd$_{3}$, Re$_{50}$, Fe$_{52}$Rh$_{48}$, Fe$_{49.1}$Rh$_{50.9}$, Fe$_{51.8}$Rh$_{48.2}$ and Fe$_{52}$Rh$_{48}$ at $T = 0.6$ to 2.5 K has been measured. The analysis of $^3\text{He} - ^4\text{He}$ mixtures' specific heat data has been completed. The apparatus used for mixture investigations has been calibrated by making specific heat measurements on pure ^3He at three different degrees of filling of the calorimeter. This will ensure the possibility of reliable comparison with earlier experiments and those to come in future. A program to measure specific heat of isotopically pure metals at temperatures 0.5 to 2.0 K is being arranged. The continuation of these measurements to the 100 mK region, involving the replacement of the ^3He cryostat by a dilution machine, is planned.
4.3. **Nuclear specific heats** (Pickett, Gregers-Hansen, Krusius)

Since 1967 hyperfine interactions have been studied in the rare earth metals and the semimetals with calorimetric measurements using an adiabatic demagnetization cryostat. In the previous years the nuclear specific heats of nine rare earths were measured in the temperature range 0.02 - 0.5 K. As a continuation of these measurements the magnetic ordering properties at the lowest temperatures of polycrystalline praseodymium and neodymium were investigated by measuring the nuclear specific heat in external magnetic fields. The hyperfine field in praseodymium showed strong and continuous polarizability by the external field and the phenomenon of hyperfine field enhanced nuclear cooling was demonstrated. In neodymium, however, no polarization was achieved with the magnetic fields available of 20 kilogauss and less.

The investigations of the nuclear quadrupole interactions in the semimetals were continued with measurements on arsenic and tellurium doped bismuth. Earlier it had been found that the extremely low free carrier density in bismuth caused the nuclear spin-lattice relaxation time to be long enough to decouple the quadrupole interaction from the specific heat in a practical experiment. This suggested the use of some dopant like the electron donor tellurium for improving spin-lattice relaxation. In addition to the increase in spin-lattice coupling with the tellurium content the experiments also revealed a large linear increase in the electric field gradient. In order to compare nuclear specific heat in the semimetals and in a good metallic conductor the quadrupole interaction in rhenium was measured. Due to its much larger magnitude the sign of the interaction could also be resolved in this case.

The heat capacity measurements were finished in September and the cryostat was used for Pomeranchuk cooling experiments thereafter.

4.4. **Experiments on Pomeranchuk cooling** (Phillips, Anufriyev, Buch Lund, Nores, Valo, Veuro)

A Pomeranchuk cooling stage has been constructed and added to the previous adiabatic demagnetization cryostat. The
old CMN temperature measuring system has been replaced by NMR apparatus using platinum as signal source material. In preliminary experiments Pomeranchuk cooling and platinum NMR signal have been observed. Further investigations of the present system are going on with experiments on the magnetic properties of 3He as the objective.

4.5. Experiments with nuclear cooling (Lounasmaa, Aalto, Berglund, Collan, Ehnholm, Gylling, Paalanen)

A cryostat has been constructed in which, for the first time, dilution refrigeration and nuclear cooling operate in series. Preliminary experiments have resulted in an equilibrium temperature of 0.52 mK in the copper nuclear stage. This is the lowest lattice and conduction electron temperature ever achieved. The nuclear stage has remained below 1 mK for more than 6 hours. Measurements on spin-lattice relaxation and thermal conductivity of copper have been carried out in the 1 mK - 10 mK region. Effort has also been put in developing thermometry suitable for the 1mK temperature region, including nuclear orientation, pulsed NMR- and continuous wave NMR-thermometry.

The apparatus is presently being prepared for a research program investigating the Kapitza resistance between liquid 3He and solids in the mK region.

4.6. Ultrasonic wave interactions and phonons (Luukkala, Hattunen, Surakka)

At present the main interest focuses on acoustic surface waves and their nonlinear interactions. Convolution, correlation and time inversion using parametric interactions of 100 MHz surface waves are currently being investigated. The photolithographic fabrication of interdigital surface wave transducers has also got started. Critical angle reflectivity measurements in liquid-metal boundaries have also been performed where we have found a new, leaky-mode propagation, corresponding to a complex wave vector. Several related technical projects are also in progress.
4.7. **Theoretical work** (Stenholm, Hirvonen, Salomaa)

Studies are pursued on the further development of W.E. Lamb's semiclassical laser theory extended to large intensities (Stenholm, Salomaa) and on the experimental consequences of relaxation phenomena in Mössbauer spectra (Stenholm, Hirvonen). In addition, M. Vuorio (Research Institute for Theoretical Physics, University of Helsinki) is investigating, in collaboration with our laboratory, the Kapitza thermal boundary resistance between 3He and a magnetic substance. This work is of practical importance for measurements of the properties of liquid 3He at ultralow temperature, as planned for the nuclear cooling cryostat.

4.8. **Technical projects** (Sarlin)

Many technical projects are pursued, partly in collaboration with Finnish industry. These include design and construction of complete dilution cryostats for other universities as a part of joint research projects and helium leak testing of nuclear power station components made by Finnish industry.

5. **VISITS AND COLLABORATION WITH OTHER LABORATORIES**

The following persons have participated, during 1970, in our research projects:

- Dr. J. Tóth (Central Research Institute for Physics, Budapest). 3He cryostat (1 1/2 months);
- Dr. E. Seidel (Technische Hochschule, Munich). Mössbauer effect research (2 months);
- Dr. F. Wagner (Technische Hochschule, Munich). Mössbauer effect research (2 months);
- Dr. S.G. Lipson (Technion, Haifa). (1 month);
- Dr. D. Novák (Institute for Nuclear Research, Debrecen). (2 months);
- Dr. J. Sawicki (Jagellonian University, Cracow). Mössbauer effect research (2 months).

The following persons have made short visits to our laboratory for the purpose of giving seminars and participating in
scientific discussions:

Academician N.N. Bogoliubov (Nuclear Research Institute, Dubna);

Prof. J.C. Wheatley (University of California, La Jolla);

Prof. Stig Lundqvist (Chalmers Tekniska Högskola, Göteborg);

Prof. S.S. Hanna (Stanford University);

Prof. P. Kienle (Technische Hochschule, Munich);

Prof. B.P. Gregory (Director General, Cern);

Prof. L. Reatto (University of Parma);

Dr. A. Yokosawa (Argonne National Laboratory);

Dr. J. Vermeulen (Cern, Geneve);

Dr. J. Ketterson (Argonne National Laboratory);

Dr. R.L. Cohen (Bell Telephone Laboratories, Murray Hill);

Prof. D. Pines (University of Illinois).

Prof. O.V. Lounasmaa was working as a visiting scientist at the University of California (San Diego) on January 2-15, 1970, and at the Argonne National Laboratory on January 19-24, 1970. He has given the following seminars: "The Pomeranchuk Method of Cooling", on January 29, 1970, at the Institute Laue-Langevin in Grenoble; "Recent Experiments with Nuclear Cooling", on October 22, 1970, at the Free University of Berlin; on October 26, 1970, at the University of Louvain; on November 23, 1970, at the University of Uppsala; on November 24, 1970, at the University of Copenhagen; on November 25, 1970, at the University of Leiden; and on November 26, 1970, at the University of Amsterdam.

The laboratory personnel made a group visit in June 1970 to the A.F. Ioffe Physico-Technical Institute, Leningrad.

About 30 physicists from developing countries, who participated in the International Seminar of Physics in Uppsala, visited the Low Temperature Laboratory in September 1970.

Some of our Mössbauer effect research has been done in collaboration with Prof. R.L. Mössbauer’s laboratory at the Technische Hochschule, Munich (Dr. F. Wagner and Dr. E. Seidel).
6. PARTICIPATION IN SUMMER SCHOOLS AND CONFERENCES

The 4th Nordic Solid State Conference, Turku, August 10-13, 1970: O.V. Lounasmaa; P.M. Berglund; V.K. Tyyppi, paper on "Mössbauer measurements of some rare earth compounds with a $^3\text{He}/^4\text{He}$ dilution refrigerator"; S.T. Islander, paper on "Specific heat of liquid $^3\text{He}/^4\text{He}$ mixtures near the junction of the lambda and phase-separation curves"; M.F. Krusius, papers on "Nuclear heat capacity of the semimetals As, Sb and Bi" and "Magnetic ordering properties of polycrystalline praseodymium and applications to nuclear cooling"; P.E. Gregers-Hansen, paper on "Specific heat of rhenium in the temperature range 0.02 K to 0.4 K"; M.T. Hirvonen, paper on "Hyperfine fields at dilute Fe and Co impurities at Pt and Pd hosts at low temperatures".

The 12th International Conference on Low Temperature Physics, Kyoto, September 4-10, 1970: O.V. Lounasmaa; T.E. Katila, papers on "Mössbauer measurements of some rare earth compounds with a $^3\text{He}/^4\text{He}$ dilution refrigerator" and "Hyperfine fields at dilute Fe and Co impurities in Pd and Pt hosts at low temperatures"; C.R. Pickett, papers on "Specific heat of liquid $^3\text{He}/^4\text{He}$ mixtures near the junction of the lambda and phase-separation curves", "Quadrupole interactions in the semimetals As, Sb and Bi" and "Nuclear heat capacity and nuclear cooling..."
of metallic praseodymium"; R.G. Gylling, paper on "Nuclear cooling combined with dilution refrigeration".

International Institute of Refrigeration, Commission I Meeting, Tokyo, September 11-12, 1970: G.R. Pickett, paper on "A pulsed nuclear resonance thermometer, and its use to determine the shape correction of a CMN slurry thermometer"; R.G. Gylling, paper on "A powerful dilution refrigerator for nuclear cooling experiments".

7. PUBLICATIONS DURING 1970

G.J. Ehnholm, T.E. Katila, O.V. Lounasmaa, P. Reivari, G. M. Kalvius

Yrjö Collan and Heikki Collan, "Interpretation of Serial Sections". Zeitschrift für wissenschaftliche Mikroskopie und mikroskopische Technik 70, 156 (1970).

12th International Conf. on Low Temperature Physics (Kyoto 1970).

Otaniemi, August 1, 1971

Olli V. Lounasmaa